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Quantum trajectories

4.1 Introduction

A very general concept of a quantum trajectory would be the path taken by the state of a
quantum system over time. This state could be conditioned upon measurement results, as
we considered in Chapter 1. This is the sort of quantum trajectory we are most interested
in, and it is generally stochastic in nature. In ordinary use, the word trajectory usually
implies a path that is also continuous in time. This idea is not always applicable to quan-
tum systems, but we can maintain its essence by defining a quantum trajectory as the
path taken by the conditional state of a quantum system for which the unconditioned
system state evolves continuously. As explained in Chapter 1, the unconditioned state
is that obtained by averaging over the random measurement results which condition the
system.

With this motivation, we begin in Section 4.2 by deriving the simplest sort of quantum
trajectory, which involves jumps (that is, discontinuous conditioned evolution). In the
process we will reproduce Lindblad’s general form for continuous Markovian quantum
evolution as presented in Section 3.6. In Section 4.3 we relate these quantum jumps to
photon-counting measurements on the bath for the model introduced in Section 3.11, and
also derive correlation functions for these measurement records. In Section 4.4 we consider
the addition of a coherent field (the ‘local oscillator’) to the output before detection. In
the limit of a strong local oscillator this is called homodyne detection, and is described
by a continuous (diffusive) quantum trajectory. In Section 4.5 we generalize this theory
to describe heterodyne detection and even more general diffusive quantum trajectories. In
Section 4.6 we illustrate the detection schemes discussed by examining the conditioned
evolution of a simple system: a damped, driven two-level atom. In Section 4.7 we show
that there is a complementary description of continuous measurement in the Heisenberg
picture, and that this can also be used to derive correlation functions and other statistics
of the measurement results. In Section 4.8 we show how quantum trajectory theory can
be generalized to deal with imperfect detection, incorporating inefficiency, thermal and
squeezed bath noise, dark noise and finite detector bandwidth. In Section 4.9 we turn from
optical examples to mesoscopic electronics, including a discussion of imperfect detection.
We conclude with further reading in Section 4.10.
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4.2 Quantum jumps

4.2.1 Master equations and continuous measurements

The evolution of an isolated quantum system in the absence of measurement is Markovian:

|ψ(t + T )〉 = Û (T )|ψ(t)〉 = exp(−iĤT )|ψ(t)〉, (4.1)

where Ĥ is the Hamiltonian. This equation leads to a finite differential

lim
τ→0

|ψ(t + τ )〉 − |ψ(t)〉
τ

= |ψ̇ (t)〉 = −iĤ (t)|ψ(t)〉 = finite (4.2)

and hence to continuous evolution. We now seek to generalize this unitary evolution
by incorporating measurements. To consider the unconditioned state, averaged over the
possible measurement results, we have to represent the system by a state matrix rather than
a state vector. Then continuous evolution of ρ implies

lim
τ→0

ρ(t + τ )− ρ(t)

τ
= ρ̇ (t) = finite. (4.3)

In order to obtain a differential equation for ρ(t), we require the measurement time T
to be infinitesimal. In this limit, we say that we are monitoring the system. Then, from
Eq. (1.86), the state matrix at time t + dt , averaging over all possible results, is

ρ(t + dt) =
∑
r

J [M̂r (dt)]ρ(t). (4.4)

If ρ(t + dt) is to be infinitesimally different from ρ(t), then a first reasonable guess at how
to generalize Eq. (4.1) would be to consider just one r , say r = 0, and set

M̂0(dt) = 1̂− (R̂/2+ iĤ )dt, (4.5)

where R̂ and Ĥ are Hermitian operators. However, we find that this single measurement
operator does not satisfy the completeness condition (1.78), since, to order dt ,

M̂
†
0 (dt)M̂0(dt) = 1̂− R̂ dt �= 1̂. (4.6)

The above result reflects the fact that a measurement with only one possible result is not
really a measurement at all and hence the ‘measurement operator’ (4.5) must be a unitary
operator, as it is with R̂ = 0. If R̂ �= 0 then we require at least one other possible result to
enable

∑
r M̂r (dt)†M̂r (dt) = 1̂. The simplest suggestion is to consider two results 0 and 1.

We let M̂0(dt) be as above, and define

M̂1(dt) =
√

dt ĉ, (4.7)

where ĉ is an arbitrary operator obeying

ĉ†ĉ = R̂, (4.8)

which implies that we must have R̂ ≥ 0, so that

M̂
†
0 (dt)M̂0(dt)+ M̂

†
1 (dt)M̂1(dt) = 1̂. (4.9)
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This gives the non-selective evolution

ρ(t + dt) = [1̂− (ĉ†ĉ/2+ iĤ )dt]ρ(t)[1̂− (ĉ†ĉ/2− iĤ )dt]+ dt ĉρ(t)ĉ†, (4.10)

which has the differential form

ρ̇ = −i[Ĥ , ρ]+D[ĉ]ρ ≡ Lρ. (4.11)

Allowing for more than one irreversible term, we obtain exactly the master equation derived
by Lindblad by more formal means [Lin76] (see Section 3.6).

4.2.2 Stochastic evolution

Let us consider the evolution implied by the two measurement operators above. The prob-
ability for the result r = 1 is

℘1(dt) = Tr[J [M̂1(dt)]ρ] = dt Tr [ĉ†ĉρ], (4.12)

which is infinitesimal (provided that ĉ†ĉ is bounded as assumed by Lindblad [Lin76]).
That is to say, for almost all infinitesimal time intervals, the measurement result is r = 0,
because ℘0(dt) = 1−O(dt). The result r = 0 is thus regarded as a null result. In the case
of no result, the system state changes infinitesimally, but not unitarily, via the operator
M̂0(dt). At random times, occurring at rate ℘1(dt)/dt , there is a result r = 1, which we
will call a detection. When this occurs, the system undergoes a finite evolution induced
by the operator M̂1(dt). This change can validly be called a quantum jump. However, it
must be remembered that it represents a sudden change in the observer’s knowledge, not
an objective physical event as in Bohr’s original conception in the 1910s [Boh13].

Real measurements that correspond approximately to this ideal measurement model
are made routinely in experimental quantum optics. If ĉ = √γ â then Eq. (4.11) is the
damped-cavity master equation derived in Section 3.3.2, and this theory describes the
system evolution in terms of photodetections of the cavity output. Note that we are ignoring
the time delay between emission from the system and detection by the detector. Loosely,
we can think of the conditioned state here as being the state the system was in at the time
of emission. When it comes to considering feedback control of the system we will see that
any time delay, whether between the emission and detection or between the detection and
feedback action, must be taken into account.

Let us denote the number of photodetections up to time t by N (t), and say for simplicity
that the system state at time t is a pure state |ψ(t)〉. Then the stochastic increment dN (t)
obeys

dN (t)2 = dN (t), (4.13)

E[dN (t)] = 〈M̂†
1 (dt)M̂1(dt)〉 = dt〈ψ(t)|ĉ†ĉ|ψ(t)〉, (4.14)

where a classical expectation value is denoted by E and the quantum expectation value
by angle brackets. The first equation here simply says that dN is either zero or one, as it
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must be since it is the increment in N in an infinitesimal time. The second equation gives
the mean of dN , which is identical with the probability of detecting a photon. This is an
example of a point process – see Section B.6.

From the measurement operators (4.5) and (4.7) we see that, when dN (t) = 1, the state
vector changes to

|ψ1(t + dt)〉 = M̂1(dt)|ψ(t)〉√
〈M̂†

1 (dt)M̂1(dt)〉(t)
= ĉ|ψ(t)〉√
〈ĉ†ĉ〉(t)

, (4.15)

where the denominator gives the normalization. If there is no detection, dN (t) = 0 and

|ψ0(t + dt)〉 = M̂0(dt)|ψ(t)〉√
〈M̂†

0 (dt)M̂0(dt)〉(t)
= {1̂− dt

[
iĤ + 1

2 ĉ
†ĉ − 1

2 〈ĉ†ĉ〉(t)
]}|ψ(t)〉, (4.16)

where the denominator has been expanded to first order in dt to yield the nonlinear term.
This stochastic evolution can be written explicitly as a nonlinear stochastic Schrödinger

equation (SSE):

d|ψ(t)〉 =
[

dN (t)

(
ĉ√
〈ĉ†ĉ〉(t)

− 1

)
+ [1− dN (t)]dt

( 〈ĉ†ĉ〉(t)
2

− ĉ†ĉ

2
− iĤ

)]
|ψ(t)〉.

(4.17)

It is called a Schrödinger equation only because it preserves the purity of the state, like
Eq. (4.1). We will call a solution to this equation a quantum trajectory for the system.

We can simplify the stochastic Schrödinger equation by using the rule (see Section B.6)

dN (t)dt = o(dt). (4.18)

This notation means that the order of dN (t)dt is smaller than that of dt and so the former
is negligible compared with the latter. Then Eq. (4.17) becomes

d|ψ(t)〉 =
[

dN (t)

(
ĉ√
〈ĉ†ĉ〉(t)

− 1̂

)
+ dt

( 〈ĉ†ĉ〉(t)
2

− ĉ†ĉ

2
− iĤ

)]
|ψ(t)〉. (4.19)

Exercise 4.1 Verify that the only difference between the two equations is that the state
vector after a jump is infinitesimally different. Since the total number of jumps in any finite
time is finite, the difference between the two equations is negligible.

From Eq. (4.19) it is simple to reconstruct the master equation using the rules (4.13) and
(4.14). First define a projector

π̂ (t) = |ψ(t)〉〈ψ(t)|, (4.20)
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and find (using the notation |dψ〉 = d|ψ〉)
dπ̂ (t) = |dψ(t)〉〈ψ(t)| + |ψ(t)〉〈dψ(t)| + |dψ(t)〉〈dψ(t)| (4.21)

= {dN (t)G[ĉ]− dt H
[
iĤ + 1

2 ĉ
†ĉ
]}
π̂ (t). (4.22)

Here, the nonlinear (in ρ) superoperators G and H are defined by

G[r̂]ρ = r̂ρr̂†

Tr[r̂ρr̂†]
− ρ, (4.23)

H[r̂]ρ = r̂ρ + ρr̂† − Tr[r̂ρ + ρr̂†]ρ. (4.24)

Now define

ρ(t) = E[π̂ (t)], (4.25)

that is, the state matrix is the expected value or ensemble average of the projector. From
Eq. (B.54), the rule (4.14) generalizes to

E
[
dN (t)g

(
π̂ (t)

)] = dt E
[
Tr
[
π̂ (t)ĉ†ĉ

]
g
(
π̂ (t)

)]
, (4.26)

for any function g. Using this yields finally

dρ = −i dt[Ĥ , ρ]+ dt D[ĉ]ρ, (4.27)

as required.

Exercise 4.2 Verify Eqs. (4.22) and (4.27) following the above steps.

4.2.3 Quantum trajectories for simulations

For the most general master-equation evolution,

ρ̇ = −i[Ĥ , ρ]+
∑
µ

D[ĉµ]ρ, (4.28)

the above SSE can be generalized to

d|ψ(t)〉 =
∑
µ

dNµ(t)

 ĉµ√
〈ĉ†µĉµ〉(t)

− 1̂

+ dt

(
〈ĉ†µĉµ〉(t)

2
− ĉ†µĉµ

2
− iĤ

)|ψ(t)〉,

(4.29)

with

E[dNµ(t)] = 〈ψ(t)|ĉ†µĉµ|ψ(t)〉dt, (4.30)

dNµ(t)dNν(t) = dNµ(t)δµν. (4.31)
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Equations of this form have been used extensively since the mid 1990s in order to obtain
numerical solutions of master equations [DZR92, MCD93]. The solution ρ(t) is approxi-
mated by the ensemble average E[|ψ(t)〉〈ψ(t)|] over a finite number M � 1 of numerical
realizations of the stochastic evolution (4.29).

The advantage of doing this rather than solving the master equation (4.28) is that, if the
system requires a Hilbert space of dimension N in order to be represented accurately, then
in general storing the state matrix ρ requires of order N2 real numbers, whereas storing
the state vector |ψ〉 requires only of order N . For large N , the time taken to compute the
evolution of the state matrix via the master equation scales as N4, whereas the time taken
to compute the ensemble of state vectors via the quantum trajectory scales as N2M , or
just N2 if parallel processors are available. Even though one requires M � 1, reasonable
results may be obtainable with M � N2. For extremely large N it may be impossible even
to store the state matrix on most computers. In this case the quantum trajectory method
may still be useful, if one wishes to calculate only certain system averages, rather than the
entire state matrix, via

E[〈ψ(t)|Â|ψ(t)〉] = Tr[ρ(t)Â]. (4.32)

One area where this technique has been applied to good effect is the quantized motion of
atoms undergoing spontaneuous emission [DZR92].

The simplest method of solution for Eq. (4.29) is to replace all differentials d by small
but finite differences δ. That is, in a small interval of time δt , a random numberR(t) chosen
uniformly from the unit interval is generated. If

R(t) < ℘jump =
∑
µ

〈ψ(t)|ĉ†µĉµ|ψ(t)〉δt (4.33)

then a jump happens. One of the possible jumps (µ) is chosen randomly using another (or
the same) random number, with the weights 〈ψ(t)|ĉ†µĉµ|ψ(t)〉δt/℘jump. The appropriate
δNµ is then set to 1, all others set to zero, and the increment (4.29) calculated.

In practice, this is not the most efficient method for simulation. Instead, the following
method is generally used. Say the system starts at time 0. A random number R is generated
as above. Then the unnormalized evolution

d

dt
|ψ̃(t)〉 = −

(∑
µ

ĉ†µĉµ/2+ iĤ

)
|ψ̃(t)〉 (4.34)

is solved for a time T such that 〈ψ̃(T )|ψ̃(T )〉 = R. This time T will have to be found
iteratively. However, since Eq. (4.34) is an ordinary linear differential equation, it can be
solved efficiently using standard numerical techniques. The decay in the state-matrix norm
〈ψ̃(t)|ψ̃(t)〉 is because Eq. (4.34) keeps track only of the no-jump evolution, derived from
the repeated action of M̂0(dt). That is, the norm is equal to the probability of this series of
results occurring (see Section 1.4). Thus this method generates T , the time at which the first
jump occurs, with the correct statistics. Which jump (i.e. which µ) occurs at this time can
be determined by the technique described above. The relevant collapse operator ĉµ is then
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applied to the system |ψ̃(T )〉, and the state normalized again. The simulation then repeats
as if time t = T were the initial time t = 0.

4.3 Photodetection

4.3.1 Photon emission and detection

We claimed above that jumpy quantum trajectories are realized routinely in quantum-
optics laboratories by counting photons in the output beam from a cavity. We now show
this explicitly for this sort of measurement which we call direct detection. Recall from
Eq. (3.158) in Section 3.11 that the interaction between the system and the bath in the
infinitesimal interval [t, t + dt) is described by the unitary operator

Û (t + dt, t) = exp
[
ĉ dB̂† − ĉ† dB̂ − iĤ dt

]
. (4.35)

Here, for convenience, we are using the short-hand dB̂ = dB̂z:=−t , and we have included a
system Hamiltonian Ĥ , all in the interaction frame. If the system is in a pure state at time t
(as it will be if the bath has been monitored up to that time), then we need consider only the
bath mode on which dB̂ acts, which is initially in the vacuum state. That is, the entangled
system–bath state at the end of the interval is Û (t + dt, t)|0〉|ψ(t)〉.

Keeping only the non-normally ordered second-order terms dB̂ dB̂† = dt (see Sec-
tion 3.11.1), and given the fact that dB̂|0〉 = 0, one finds

Û (t + dt, t)|0〉|ψ(t)〉 = [1̂− dt ĉ†ĉ/2− iĤ dt]|0〉|ψ(t)〉 + dB̂†|0〉ĉ|ψ(t)〉. (4.36)

Clearly dB̂†|0〉 is a bath state containing one photon. But it is not a normalized one-photon
state; rather, it has a norm of

〈0|dB̂ dB̂†|0〉 = dt. (4.37)

Thus, the probability of finding one photon in the bath is

〈0|dB̂ dB̂†|0〉〈ψ(t)|ĉ†ĉ|ψ(t)〉 = ℘1(dt), (4.38)

where℘1(dt) is defined in Eq. (4.12). Moreover, from Eq. (4.36) it is apparent that the system
state conditioned on the bath containing a photon is exactly as given in Eq. (4.15). The
probability of finding no photons in the bath is ℘0(dt) = 1− ℘1(dt), and the conditioned
system state is again as given previously in Eq. (4.16).

In the above, we have not specified whether the measurement on the bath is projective
(which would leave the number of photons unchanged) or non-projective. In reality, photon
detection, at least at optical frequencies, is done by absorption, so the field state at the
end of the measurement is the vacuum state. However, it should be emphasized that this
is in no way essential to the theory. The field state at the beginning of the next interval
[t + dt, t + 2 dt) is a vacuum state, but not because we have assumed the photons to have
been absorbed. Rather, it is a vacuum state for a new field operator, which pertains to the
part of the field which has ‘moved in’ to interact with the system while the previous part
(which has now become the emitted field) ‘moves out’ to be detected – see Section 3.11.
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4.3.2 Output correlation functions

In experimental quantum optics, it is more usual to consider a photocurrent than a photo-
count. Any multiplier in the definition of a photocurrent is either purely conventional, or
has meaning only for a particular detector, so we simply define the photocurrent to be

I (t) = dN (t)/dt. (4.39)

Note that dN(t), since its mean depends on the quantum state at time t , is conditioned on
the record dN (s) for s < t . That is, I is what is known as a self-exciting point process
[Haw71]. We write the quantum state at time t (which in general may be mixed) as ρI (t).
Here the subscript I emphasizes that it is conditioned on the photocurrent. To consider
mixed states, it is necessary to reformulate the stochastic Schrödinger equation (4.19) as
a stochastic master equation (SME). This simply means replacing the projector π̂ (t) in
Eq. (4.22) by ρI (t) to get

dρI (t) = {dN (t)G[ĉ]− dt H
[
iĤ + 1

2 ĉ
†ĉ
]}
ρI (t), (4.40)

where the jump probability is

E[dN(t)] = dt Tr
[
ĉ†ĉρI (t)

]
. (4.41)

The photocurrent (4.39) is a singular quantity, consisting of a series of Dirac δ-functions at
the times of photodetections. The most common ways to investigate its statistical properties
are to find its mean and its autocorrelation function. The first of these statistics is simply

E[I (t)] = Tr[ρ(t)ĉ†ĉ]. (4.42)

The second is defined as

F (2)(t, t + τ ) = E[I (t + τ )I (t)]. (4.43)

We will now show how this can be evaluated using Eq. (4.40). We take the state at time t
to be a given ρ(t).

First consider τ finite. Now dN (t) is either zero or one. If it is zero, then the function is
automatically zero. Hence,

F (2)(t, t + τ )(dt)2 = Pr[dN (t) = 1]× E[dN (t + τ )|dN (t) = 1], (4.44)

where E[A|B] means the expectation value of the variable A given the event B. This is
equal to

F (2)(t, t + τ )(dt)2 = Tr[ĉ†ĉρ(t)]dt × Tr
[
ĉ†ĉ dt E[ρI (t + τ )|dN (t) = 1]

]
. (4.45)

Note that the ensemble average of ρI (t + τ ) conditioned on dN (t) = 1 appears because we
have no knowledge about photodetector clicks in the interval [t + dt, t + τ ), and hence we
must average over any such jumps. Now, if dN (t) = 1, then from Eq. (4.40) we obtain (to
leading order in dt)

ρI (t + dt) = ρ(t)+ G[ĉ]ρ(t) = ĉρ(t)ĉ†/Tr[ĉρ(t)ĉ†]. (4.46)
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By virtue of the linearity of the ensemble-average evolution (4.27),

E [ρI (t + τ )|dN (t) = 1] = exp(Lτ )ĉρ(t)ĉ†/Tr[ĉρ(t)ĉ†]. (4.47)

Here the superoperator eLτ acts on the product of all operators to its right. Thus, the final
expression for τ finite is

F (2)(t, t + τ ) = Tr
[
ĉ†ĉeLτ ĉρ(t)ĉ†

]
. (4.48)

For ĉ an annihilation operator for a cavity mode, this is equal to Glauber’s second-order
coherence function, G(2)(t, t + τ ) [Gla63].

If τ = 0, then the expression (4.43) diverges, because dN (t)2 = dN (t). Naively,

F (2)(t, t) = Tr[ĉ†ĉρ(t)]/dt. (4.49)

However, since we are effectively discretizing time in bins of size dt , the expression 1/dt
at τ = 0 is properly interpreted as the Dirac δ-function δ(τ ) – see the discussion following
Eq. (3.160). Since this is infinitely larger than any finite term at τ = 0, we can write the
total expression as

F (2)(t, t + τ ) = Tr
[
ĉ†ĉeLτ ĉρ(t)ĉ†

]+ Tr
[
ĉ†ĉρ(t)

]
δ(τ ). (4.50)

Often we are interested in the stationary or steady-state statistics of the current, in which
case the time argument t disappears and ρ(t) is replaced by ρss, the (assumed unique)
stationary solution of the master equation:

Lρss = 0. (4.51)

4.3.3 Coherent field input

In the preceding section we have assumed a bath in the vacuum state. In Section 3.11.2
we showed how to derive the quantum Langevin equations and master equations for the
case of a white-noise (thermal or squeezed) bath. If one tried to consider photodetection
in such a case, one would run into the problem that a white-noise bath has a theoretically
infinite photon flux. It is not possible to count the photons in such a beam; no matter how
small the time interval, one would still expect a finite number of counts. In practice, such
noise is not strictly white, and in any case the bandwidth of the detector will keep the count
rate finite.1 Nevertheless, in the limit where the white-noise approximation is a good one,
the photon flux due to the bath will be much greater than that due to the system. Hence,
direct detection will yield negligible information about the system state, so the quantum
trajectory will simply be the unconditioned master equation (4.27).

However, the vacuum input considered so far can still be generalized by adding a
coherent field, as explained in Section 3.11.2. Given that dB̂ dB̂† = dt , to obtain a state with
〈dB̂〉 = β dt as in Eq. (3.179), we can assume an initial state of the form [1̂+ β dB̂†]|0〉,

1 Or the detector may burn out!
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which is normalized to leading order. Now recall from Section 4.3.1 that a normalized
one-photon state is dB̂†|0〉/√dt . Therefore, the jump measurement operator is

M̂1(dt) = (dt)−1/2〈0|dB̂ Û (t + dt, t)[1̂+ β dB̂†]|0〉, (4.52)

which to leading order evaluates to

M̂1(dt) = (dt)1/2(ĉ + β). (4.53)

Similarly, the no-jump measurement operator

M̂0(dt) = 〈0|Û (t + dt, t)[1̂+ β dB̂†]|0〉 (4.54)

evaluates to

M̂0(dt) = 1̂− [iĤ + 1
2 ĉ

†ĉ + ĉ†β
]
dt. (4.55)

Exercise 4.3 Show these.

These measurement operators define the following SSE:

d|ψI (t)〉 =
[

dN (t)

(
ĉ + β√

〈(ĉ† + β∗)(ĉ + β)〉I (t)
− 1

)
+ dt

×
( 〈ĉ†ĉ〉I (t)

2
− c†ĉ

2
+ 〈ĉ

†β + β∗ĉ〉I (t)

2
− ĉ†β − iĤ

)]
|ψI (t)〉.

(4.56)

The ensemble-average evolution is the master equation

ρ̇ = D[ĉ]ρ − i[Ĥ + iβ∗ĉ − iĉ†β, ρ], (4.57)

which is as expected from Eq. (3.182) with N = M = 0. To ‘unravel’ this master equa-
tion for purposes of numerical calculation, one could choose the SSE as for the vacuum
input (4.19), merely changing the Hamiltonian as indicated in the master equation (4.57).
However, this would be a mistake if the trajectories were meant to represent the actual
conditional evolution of the system, which is given by Eq. (4.56).

4.4 Homodyne detection

4.4.1 Adding a local oscillator

As noted in Section 3.6, the master equation

dρ = −i dt[Ĥ , ρ]+ dt D[ĉ]ρ (4.58)

is invariant under the transformation

ĉ→ ĉ + γ ; Ĥ → Ĥ − i 1
2 (γ ∗ĉ − γ ĉ†), (4.59)



158 Quantum trajectories

J hom  (t) + constant

c
SYSTEM
OUTPUT

VERY STRONG 
LOCAL OSCILLATOR

γ
LRBS

Fig. 4.1 A scheme for simple homodyne detection. A low-reflectivity beam-splitter (LRBS) transmits
almost all of the system output, and adds only a small amount of the local oscillator through reflection.
Nevertheless, the local oscillator is so strong that this reflected field dominates the intensity at the
single photoreceiver. This is a detector that does not resolve single photons but rather produces a
photocurrent proportional to Jhom(t) plus a constant.

where γ is an arbitrary complex number (in particular, it is not related to the system
damping rate for which we sometimes use γ ). Under this transformation, the measurement
operators transform to

M̂1(dt) =
√

dt(ĉ + γ ), (4.60)

M̂0(dt) = 1̂− dt
[
iĤ + 1

2 (ĉγ ∗ − ĉ†γ )+ 1
2 (ĉ† + γ ∗)(ĉ + γ )

]
. (4.61)

This shows that the unravelling of the deterministic master-equation evolution into a set of
stochastic quantum trajectories is not unique.

Physically, the above transformation can be achieved by homodyne detection. In the
simplest configuration (see Fig. 4.1), the output field of the cavity is sent through a beam-
splitter of transmittance η. The transformation of a field operator b̂ entering one port of a
beam-splitter can be taken to be

b̂→√ηb̂ +
√

1− ηô, (4.62)

where ô is the operator for the field incident on the other port of the beam-splitter, which is
reflected into the path of the transmitted beam. This other field transforms on transmission
as ô→√ηô−√1− ηb̂. (Note the minus sign.) In the case of homodyne detection, this
other field is a very strong coherent field. It has the same frequency as the system dipole,
and is known as the local oscillator. It can be modelled as ô = γ /

√
1− η + ν̂. The first

part represents the coherent amplitude of the local oscillator, with |γ |2/(1− η) being its
photon flux. The second part represents the ‘vacuum fluctuations’; ν̂ is a continuum field
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that satisfies [ν̂(t), ν̂†(t ′)] = δ(t − t ′) and can be assumed to act on the vacuum state. For η
very close to unity, as is desired here, the transformation (4.62) reduces to

b̂→ b̂ + γ, (4.63)

which is called a displacement of the field (see Section A.4). A perfect measurement of the
photon number of the displaced field leads to the above measurement operators.

Exercise 4.4 Convince yourself of this.

Let the coherent field γ be real, so that the homodyne detection leads to a measurement
of the x quadrature of the system dipole. This can be seen from the rate of photodetections
at the detector:

E[dN (t)/dt] = Tr[(γ 2 + γ x̂ + ĉ†ĉ)ρI (t)]. (4.64)

Here we are defining the two system quadratures by2

x̂ = ĉ + ĉ†; ŷ = −i(ĉ − ĉ†). (4.65)

In the limit that γ is much larger than
〈
ĉ†ĉ
〉
, the rate (4.64) consists of a large constant term

plus a term proportional to x̂, plus a small term. From the measurement operators (4.60)
and (4.61), the stochastic master equation for the conditioned state matrix is

dρI (t) = {dN (t)G[ĉ + γ ]+ dt H
[−iĤ − γ ĉ − 1

2 ĉ
†ĉ
]}
ρI (t). (4.66)

This SME can be equivalently written as the SSE

d|ψI (t)〉 =
[

dN (t)

(
ĉ + γ√

〈(ĉ† + γ )(ĉ + γ )〉I (t)
− 1

)
+ dt

×
( 〈ĉ†ĉ〉I (t)

2
− ĉ†ĉ

2
+ 〈ĉ

†γ + γ ĉ〉I (t)

2
− γ ĉ − iĤ

)]
|ψI (t)〉.

(4.67)

This shows how the master equation (4.58) can be unravelled in a completely different man-
ner from the usual quantum trajectory (4.19). Note the minor difference from the coherently
driven SSE (4.56), which makes the latter simulate a different master equation (4.57).

4.4.2 The continuum limit

The ideal limit of homodyne detection is when the local oscillator amplitude goes to infinity.
In this limit, the rate of photodetections goes to infinity, but the effect of each detection on
the system goes to zero, because the field being detected is almost entirely due to the local

2 Be aware of the following possibility for confusion: for a two-level atom we typically have ĉ = σ̂−, in which case x̂ = σ̂x but
ŷ = −σ̂y !
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oscillator. Thus, it should be possible to approximate the photocurrent by a continuous
function of time, and also to derive a smooth evolution equation for the system. This was
done first by Carmichael [Car93]; the following is a somewhat more rigorous working of
the derivation he sketched.

Let the system operators be of order unity, and let the local oscillator amplitude
γ be an arbitrarily large real parameter. Consider a time interval [t, t + δt), where
δt = O(γ−3/2). This scaling is chosen so that, within this time interval, the number of
detections δN ∼ γ 2 δt = O(γ 1/2) is very large, but the systematic change in the system, of
O(δt) = O(γ−3/2), is very small. Taking the latter change into account, the mean number
of detections in this time will be

µ = Tr
[(
γ 2 + γ x̂ + ĉ†ĉ

){
ρI (t)+O

(
γ−3/2)}]δt

= [γ 2 + γ 〈x̂〉I (t)+O
(
γ 1/2

)]
δt. (4.68)

The error in µ (due to the change in the system over the interval) is larger than the
contribution from ĉ†ĉ. The variance in δN will be dominated by the Poissonian number
statistics of the coherent local oscillator (see Section A.4.2). Because the number of counts
is very large, these Poissonian statistics will be approximately Gaussian. Specifically, it
can be shown [WM93b] that the statistics of δN are consistent with those of a Gaussian
random variable of mean (4.68) and variance

σ 2 =[γ 2 +O
(
γ 3/2

)]
δt. (4.69)

The error in σ 2 is necessarily as large as expressed here in order for the statistics of δN to
be consistent with Gaussian statistics. Thus, δN can be written as

δN = γ 2 δt[1+ 〈x̂〉I (t)/γ ]+ γ δW, (4.70)

where the accuracy in both terms is only as great as the highest order expression in γ−1/2.
Here δW is a Wiener increment satisfying E[δW ] = 0 and E[(δW )2] = δt (see Appendix
B).

Now, insofar as the system is concerned, the time δt is still very small. Expanding
Eq. (4.66) in powers of γ−1 gives

δρI (t) = δN (t)

(H[ĉ]

γ
+ 〈ĉ

†ĉ〉I (t)G[ĉ]− 〈x̂〉I (t)H[ĉ]

γ 2
+O

(
γ−3))ρI (t)

+ δt H
[−iĤ − γ ĉ − 1

2 ĉ
†ĉ
]
ρI (t), (4.71)

where G and H are as defined previously in Eqs. (4.23) and (4.24).

Exercise 4.5 Show this.

Although Eq. (4.66) requires that dN (t) be a point process, it is possible simply to substitute
the expression obtained above for δN as a Gaussian random variable into Eq. (4.71). This
is because each jump is infinitesimal, so the effect of many jumps is approximately equal to
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the effect of one jump scaled by the number of jumps. This can be justified by considering an
expression for the system state given precisely δN detections, and then taking the large-δN
limit [WM93b]. The simple procedure adopted here gives the correct answer more rapidly.

Keeping only the lowest-order terms in γ−1/2 and letting δt → dt yields the SME

dρJ (t) = −i[Ĥ , ρJ (t)]dt + dt D[ĉ]ρJ (t)+ dW (t)H[ĉ]ρJ (t), (4.72)

where the subscript J is explained below, under Eq. (4.75). Here dW (t) is an infinitesimal
Wiener increment satisfying

dW (t)2 = dt, (4.73)

E[dW (t)] = 0. (4.74)

That is, the jump evolution of Eq. (4.66) has been replaced by diffusive evolution.

Exercise 4.6 Derive Eq. (4.72).

By its derivation, Eq. (4.72) is an Itô stochastic differential equation, which we indicate
by our use of the explicit increment (rather than the time derivative). It is trivial to see
that the ensemble-average evolution reproduces the non-selective master equation by using
Eq. (4.74) to eliminate the noise term. Readers unfamiliar with stochastic calculus, or
unfamiliar with our conventions regarding the Itô and Stratonovich versions, are referred
to Appendix B.

Just as γ →∞ leads to continuous evolution for the state, so does it change the point-
process photocount into a continuous photocurrent with white noise. Removing the constant
local oscillator contribution gives

Jhom(t) ≡ lim
γ→∞

δN (t)− γ 2 δt

γ δt
= 〈x̂〉J (t)+ ξ (t), (4.75)

where ξ (t) = dW (t)/dt . This is why the subscript I has been replaced by J in Eq. (4.72).
Finally, it is worth noting that these equations can all be derived from balanced homodyne

detection, in which the beam-splitter transmittance is one half, rather than close to unity
(see Fig. 4.2). In that case, one photodetector is used for each output beam, and the
signal photocurrent is the difference between the two currents. This configuration has
the advantage of needing smaller local oscillator powers to achieve the same ratio of
system amplitude to local oscillator amplitude, because all of the local oscillator beam is
detected. Also, if the local oscillator has classical intensity fluctuations then these cancel
out when the photocurrent difference is taken; with simple homodyne detection, these
fluctuations are indistinguishable from (and may even swamp) the signal. Thus, in practice,
balanced homodyne detection has many advantages over simple homodyne detection. But,
in theory, the ideal limit is the same for both, which is why we have considered only
simple homodyne detection. An analysis for balanced homodyne detection can be found in
Ref. [WM93b].
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c
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SYSTEM
OUTPUT
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OSCILLATOR
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Jhom(t)

Fig. 4.2 A scheme for balanced homodyne detection. A 50 : 50 beam-splitter equally mixes the system
output field and the local oscillator in both output ports. The local oscillator here can be weaker, but
still dominates the intensity at the two photoreceivers. The difference between the two photocurrents
is proportional to Jhom(t).

4.4.3 Linear quantum trajectories

For pure initial states the homodyne SME (4.72) is equivalent to the SSE

d|ψJ (t)〉 =
{
−iĤ dt − 1

2

[
ĉ†ĉ − 2〈x̂/2〉J (t)ĉ + 〈x̂/2〉2J (t)

]
dt

+ [ĉ − 〈x̂/2〉J (t)]dW (t)
}
|ψJ (t)〉. (4.76)

If one ignores the normalization of the state vector, then one gets the simpler equation

d|ψ̄J (t)〉 = dt
[−iĤ − 1

2 ĉ
†ĉ + Jhom(t)ĉ

]|ψ̄J (t)〉. (4.77)

This SSE (which is the form Carmichael originally derived [Car93]) very elegantly shows
how the state is conditioned on the measured photocurrent. We have used a bar rather
than a tilde to denote the unnormalized state because its norm alone does not tell us
the probability for a measurement result, unlike in the case of the unnormalized states
introduced in Section 1.4. Nevertheless, the linearity of this equation suggests that it should
be possible to derive it simply using quantum measurement theory, rather than in the
complicated way we derived it above. This is indeed the case, as we will show below. In
fact, a derivation for quantum diffusion equations like Eq. (4.76) was first given by Belavkin
[Bel88] along the same lines as below, but more rigorously.

Consider the infinitesimally entangled bath–system state introduced in Eq. (4.36):

|�(t + dt)〉 = [1̂− iĤ dt − 1
2 ĉ

†ĉ dt + dB̂†ĉ]|0〉|ψ(t)〉. (4.78)
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Now because dB̂|0〉 = 0, it is possible to replace dB̂† in Eq. (4.78) by dB̂† + dB̂, giving

|�(t + dt)〉 = {1̂− iĤ dt − 1
2 ĉ

†ĉ dt + ĉ[dB̂† + dB̂]
}|ψ(t)〉|0〉. (4.79)

This is useful since we wish to consider measuring the x quadrature of the bath after it has
interacted with the system. This measurement is modelled by projecting the field onto the
eigenstates |J 〉, where

[b̂ + b̂†]|J 〉 = J |J 〉. (4.80)

The unnormalized system state conditioned on the measurement is thus

|ψ̃J (t + dt)〉 = 〈J |�(t + dt)〉
= [1̂− iĤ dt − 1

2 ĉ
†ĉ dt + ĉJ dt

]|ψ(t)〉
√
℘ost(J ), (4.81)

where ℘ost(J ) is the vacuum probability distribution for J ,

℘ost(J ) = |〈J |0〉|2 =
√

dt

2π
exp
[− 1

2 dt J 2
]
. (4.82)

Exercise 4.7 Derive Eq. (4.82) from the wavefunction for the vacuum state (see Section A.4),
remembering that

√
dt b̂, not b̂, acts like an annihilation operator.

We will call℘ost(J ) the ostensible probability distribution for J for reasons that will become
obvious. The state-matrix norm of the state |ψ̃J (t + dt)〉 gives the probability for the result
J .

Taking the trace over the bath is the same as averaging over the measurement result,
yielding

ρ(t + dt) =
∫ ∞
−∞

dJ |ψ̃J (t + dt)〉〈ψ̃J (t + dt)|. (4.83)

Exercise 4.8 Show that this gives dρ(t) = dt Lρ, as in Eq. (4.11).

Note, however, that, since J is a continuous variable, the choice of integration measure in
this integral is not unique. That is, we can remove the factor

√
℘ost(J ) in the state vector

by changing the integration measure for the measurement result:

ρ(t + dt) =
∫

dµ(J )|ψ̄J (t + dt)〉〈ψ̄J (t + dt)|, (4.84)

where

|ψ̄J (t + dt)〉 = [1̂− iĤ dt − 1
2 ĉ

†ĉ dt + ĉJ dt
]|ψ(t)〉 (4.85)

and dµ(J ) = ℘ost(J )dJ . That is, we have a linear differential equation for a non-normalized
state that nevertheless averages to the correct ρ, if J (t) is chosen not according to its actual
distribution, but according to its ostensible distribution, ℘ost(J ). This equation (4.85) is
known as a linear quantum trajectory.
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Now Eq. (4.85) is the same as Eq. (4.77), where here we see that the homodyne pho-
tocurrent Jhom as we have defined it in Eq. (4.75) is simply a measurement of b̂† + b̂. All
that remains is to show that the above theory correctly predicts the statistics for J . The true
probability distribution for J is

℘(J )dJ = 〈ψ̃J (t + dt)|ψ̃J (t + dt)〉dJ = 〈ψ̄J (t + dt)|ψ̄J (t + dt)〉dµ(J ). (4.86)

That is, the actual probability for the result J equals the ostensible probability multiplied
by the state-matrix norm of |ψ̄J (t + dt)〉. From Eq. (4.85), this evaluates to

℘(J )dJ = ℘ost(J ){1+ J 〈x̂〉 dt − 〈ĉ†ĉ〉[dt − (J dt)2]}dJ. (4.87)

We can clarify the orders of the terms here by defining a new variable S = J
√

dt which is
of order unity. Then

℘(S)dS = (2π )−1/2 exp(−S2/2)[1+ S〈x̂〉
√

dt +O(dt)]dS, (4.88)

or, to the same order in dt ,

℘(S)dS = (2π )−1/2 exp[−(S −〈x̂〉
√

dt)2/2]dS. (4.89)

That is, the true distribution for the measured current J is

℘(J )dJ = ℘ost(J −〈x̂〉)dJ, (4.90)

which is precisely the statistics generated by Eq. (4.75).

Exercise 4.9 Convince yourself of this.

It is also useful to consider the state-matrix version of Eq. (4.85):

dρ̄J = dt Lρ̄J + J dt
(
ĉρ̄J + ρ̄J ĉ

†), (4.91)

where we have used (J dt)2 = dt , which is true in the statistical sense under the ostensible
distribution – see Section B.2 (the same holds for the actual distribution to leading order).
From this form it is easy to see that the ensemble-average evolution (with J chosen according
to its ostensible distribution) is the master equation ρ̇ = Lρ, because the ostensible mean
of J is zero. The actual distribution of J is again the ostensible distribution multiplied by
the norm of ρ̄J .

It is not a peculiarity of homodyne detection that we can reformulate a nonlinear equation
for a normalized state in which dW (t) = J (t)dt −〈J (t)〉dt is white noise as a linear equation
for a non-normalized state in which J (t) has some other (ostensible) statistics. Rather, it
is a completely general aspect of quantum or classical measurement theory. It is useful
primarily in those cases in which the ostensible distribution for the measurement result J (t)
can be chosen so as to yield a particularly simple linear equation. That was the case above,
where we chose J (t) to have the ostensible statistics of white noise. Another convenient
choice might be for the ostensible statistics of J (t) to be Gaussian with a variance of 1/dt
(as in white noise) but a mean of µ. In that case Eq. (4.91) becomes

dρ̄J = dt Lρ̄J + (J − µ)dt
(
ĉρ̄J + ρ̄J ĉ

† − µρ̄J
)
. (4.92)
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Exercise 4.10 Show that this does give the correct average ρ, and the correct actual
distribution for J (t).

From this, we see that the nonlinear quantum trajectory (4.72) is just a special case in which
µ is chosen to be equal to the actual mean of J (t), since then

J (t)− µ = J (t)−〈J (t)〉J = J (t)− Tr[(ĉ + ĉ†)ρJ (t)] = dW (t)/dt. (4.93)

4.4.4 Output field correlation functions

As for direct detection, the dynamics of the system can be conveniently quantified by
calculating the mean and autocorrelation function of the homodyne photocurrent. The
mean is simply

E[Jhom(t)] = Tr[ρ(t)x̂], (4.94)

where x̂ = ĉ + ĉ†, as usual, and ρ(t) is assumed given (it could be ρss). The autocorrelation
function is defined as

F
(1)
hom(t, t + τ ) = E[Jhom(t + τ )Jhom(t)]. (4.95)

We use a superscript (1), rather than (2), because this function is related to Glauber’s
first-order coherence function [Gla63], as will be shown in Section 4.5.1.

From Eq. (4.75) and the fact that ξ (t + τ ) is independent of the system at the past times
t , this expression can be split into three terms,

F
(1)
hom(t, t + τ ) = E[〈x̂〉J (t + τ )ξ (t)]+ E[ξ (t + τ )ξ (t)]+ E[〈x̂〉J (t + τ )]〈x̂〉(t), (4.96)

where the factorization of the third term is due to the fact that ρ(t) is given. The second
term here is equal to δ(τ ). The first term is non-zero because the conditioned state of the
system at time t + τ depends on the noise in the photocurrent at time t . That noise enters
by the conditioning equation (4.72), so

ρJ (t + dt) = ρ(t)+O(dt)+ dW (t)H[ĉ]ρ(t). (4.97)

The subsequent stochastic evolution of the system will be independent of the noise ξ (t) =
dW (t)/dt and hence may be averaged, giving

E[〈x̂〉J (t + τ )ξ (t)] = Tr
[
x̂eLτE[{1+ dW (t)H[ĉ]}ρJ (t)dW (t)/dt]

]
. (4.98)

Using the Itô rules for dW (t) and expanding the superoperator H yields

E[〈x̂〉J (t + τ )ξ (t)] = Tr
[
x̂eLτ

(
ĉρ(t)+ ρ(t)ĉ†

)]− Tr
[
x̂eLτ ρ(t)

]
Tr[x̂ρ(t)]. (4.99)

The second term here cancels out the third term in Eq. (4.96), to give the final expression

F
(1)
hom(t, t + τ ) = Tr

[
x̂eLτ

(
ĉρ(t)+ ρ(t)ĉ†

)]+ δ(τ ). (4.100)

Experimentally, it is more common to represent the information in the correlation function
by its Fourier transform. At steady state, this is known as the spectrum of the homodyne
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photocurrent,

S(ω) = lim
t→∞

∫ ∞
−∞

dτ F (1)
hom(t, t + τ )e−iωτ (4.101)

= 1+
∫ ∞
−∞

dτ e−iωτ Tr
[
x̂eLτ

(
ĉρss + ρssĉ

†)]. (4.102)

The unit contribution is known as the local oscillator shot noise or vacuum noise because
it is present even when there is no light from the system.

4.5 Heterodyne detection and beyond

4.5.1 Heterodyne detection

Homodyne detection has the advantage over direct detection that it can detect phase-
dependent properties of the system. By choosing the phase of the local oscillator, any given
quadrature of the system can be measured. However, only one quadrature can be measured
at a time. It would be possible to obtain information about two orthogonal quadratures
simultaneously by splitting the system output beam into two by use of a beam-splitter, and
then homodyning each beam with the same local oscillator apart from a π/2 phase shift. An
alternative way to achieve this double measurement is to detune the local oscillator from the
system dipole frequency by an amount�much larger than any other system frequency. The
photocurrent will then oscillate rapidly at frequency �, and the two Fourier components
(cos and sin) of this oscillation will correspond to two orthogonal quadratures of the output
field. This is known as heterodyne detection, which is the subject of this section

Begin with the homodyne SME (4.72), which assumed a constant local oscillator ampli-
tude and phase. Detuning the local oscillator to a frequency � above that of the system will
affect only the final (stochastic) term in Eq. (4.72). Its effect will be simply to replace ĉ by
ĉ exp(i�t), giving

dρJ (t) = −i[Ĥ , ρJ (t)]dt +D[ĉ]ρJ (t)dt

+ dW (t)
{
ei�t [ĉρJ (t)− 〈ĉ〉J (t)ρJ (t)]+ H.c.

}
. (4.103)

Consider a time δt , small on a characteristic time-scale of the system, but large compared
with �−1 so that there are many cycles due to the detuning. One might think that averaging
the rotating exponentials over this time would eliminate the terms in which they appear.
However, this is not the case because these terms are stochastic, and, since the noise is
white by assumption, it will vary even faster than the rotation at frequency �. Define two
new Gaussian random variables

δWx(t) =
∫ t+δt

t

√
2 cos(�s)dW (s), (4.104)

δWy(t) = −
∫ t+δt

t

√
2 sin(�s)dW (s). (4.105)
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It is easy to show that, to zeroth order in �−1, these obey

E[δWq(t)δWq ′ (t
′)] = δq,q ′ (δt − |t − t ′|)�(δt − |t − t ′|), (4.106)

where q and q ′ stand for x or y, and � is the Heaviside function, which is zero when its
argument is negative and one when its argument is positive.

On the system’s time-scale δt is infinitesimal. Thus the δWq(t) can be replaced by
infinitesimal Wiener increments dWq(t) obeying〈

ξq(t)ξq ′(t
′)
〉 = δq,q ′δ(t − t ′), (4.107)

where ξq(t) = dWq(t)/dt . Taking the average over many detuning cycles therefore trans-
forms Eq. (4.103) into

dρJ (t) = −i[Ĥ , ρJ (t)]dt +D[ĉ]ρJ (t)dt

+
√

1/2
(
dWx(t)H[ĉ]+ dWy(t)H[−iĉ]

)
ρJ (t). (4.108)

Exercise 4.11 Verify Eq. (4.106) and hence convince yourself of Eqs. (4.107) and (4.108).
Hint: Show that the right-hand side of Eq. (4.106) is zero when |t − t ′| > δt , and that
integrating over t or t ′ yields (δt)2.

This is equivalent to homodyne detection of the two quadratures simultaneously, each
with efficiency 1/2. (Non-unit efficiency will be discussed in Section 4.8.1). On defining a
normalized complex Wiener process by

dZ = (dWx + i dWy)/
√

2, (4.109)

which satisfies dZ∗ dZ = dt but dZ2 = 0, we can write Eq. (4.108) more elegantly as

dρJ (t) = −i[Ĥ , ρJ (t)]dt +D[ĉ]ρJ (t)dt +H[dZ∗(t)ĉ]ρJ (t). (4.110)

In order to record the measurements of the two quadratures, it is necessary to find the
Fourier components of the photocurrent. These are defined by

Jx(t) = (δt)−1
∫ t+δt

t

2 cos(�s)Jhom(s)ds, (4.111)

Jy(t) = −(δt)−1
∫ t+δt

t

2 sin(�s)Jhom(s)ds. (4.112)

To zeroth order in �−1, these are

Jx(t) = 〈x̂〉J (t)+
√

2ξx(t), (4.113)

Jy(t) = 〈ŷ〉J (t)+
√

2ξy(t). (4.114)

(Recall that x̂ and ŷ are the quadratures defined in Eq. (4.65).) Again, these are proportional
to the homodyne photocurrents that are expected for an efficiency of 1/2 (see Section 4.8.1).
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We can combine these photocurrents to make a complex heterodyne photocurrent

Jhet(t) = (δt)−1
∫ t+δt

t

exp(−i�s)Jhom(s)ds (4.115)

= 1
2 [Jx(t)+ iJy(t)] (4.116)

= 〈ĉ〉J (t)+ dZ(t)/dt, (4.117)

where dZ is as defined in Eq. (4.109). In terms of this current, one can derive an unnormal-
ized SSE analogous to Eq. (4.77):

d|ψ̄J (t)〉 = dt
[−iĤ − 1

2 ĉ
†ĉ + Jhet(t)

∗ĉ
]|ψ̄J (t)〉. (4.118)

Equation (4.118), with the expression (4.117) in place of Jhet, was introduced by Gisin
and Percival in 1992 [GP92b] as ‘quantum state diffusion’. However, they considered it to
describe the objective evolution of a single open quantum system, rather than the conditional
evolution under a particular detection scheme as we are interpreting it.

Using the same techniques as in Section 4.4.4, it is simple to show that the average
complex heterodyne photocurrent is

E[Jhet(t)] = Tr[ρ(t)ĉ], (4.119)

and the autocorrelation function (note the use of the complex conjugate) is

E
[
Jhet(t + τ )∗Jhet(t)

] = Tr[ĉ†eLτ ĉρ(t)]+ δ(τ ). (4.120)

Ignoring the second (δ-function) term in this autocorrelation function, the remainder is
simply Glauber’s first-order coherence function G(1)(t, t + τ ) [Gla63]. In steady state this
is related to the so-called power spectrum of the system by

P (ω) = 1

2π

∫ ∞
−∞

dτ e−iωτTr[ĉ†eLτ ĉρss]. (4.121)

This can be interpreted as the photon flux in the system output per unit frequency (a
dimensionless quantity).

Exercise 4.12 Show that
∫∞
−∞ dωP (ω) = Tr[ĉ†ĉρss] and that this is consistent with the

above interpretation.

In practice it is this second interpretation that is usually used to measure P (ω). That
is, the power spectrum is usually measured by using a spectrometer to determine the
output intensity as a function of frequency, rather than by autocorrelating the heterodyne
photocurrent.

4.5.2 Completely general dyne detection

Heterodyne detection, like homodyne detection, leads to an unravelling that is continuous
in time. For convenience, we will call unravellings with this property dyne unravellings.
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In this section, we give a complete classification of all such unravellings, for the general
Lindblad master equation

ρ̇ = Lρ ≡ −i[Ĥ , ρ]+ ĉkρĉ
†
k − 1

2

{
ĉ
†
k ĉk, ρ

}
. (4.122)

Here, and in related sections, we are using the Einstein summation convention because
this simplifies many of the formulae. That is, there is an implicit sum for repeated indices,
which for k is from 1 to K . Using this convention, the most general SME was shown in
Ref. [WD01] to be

dρ �J = dt Lρ �J +
[
(ĉk −〈ĉk〉)ρ �J dZ∗k + H.c.

]
. (4.123)

Here the dZk are complex Wiener increments satisfying

dZj (t)dZ∗k (t) = dt δjk, (4.124)

dZj (t)dZk(t) = dt ϒjk. (4.125)

The ϒjk = ϒkj are arbitrary complex numbers subject only to the condition that the cross-
correlations forZ are consistent with the self-correlations. This is the case iff (if and only if)

the 2K × 2K correlation matrix of the vector
(

Re[d �Z], Im[d �Z]
)

is positive semi-definite.3

That is,

dt

2

(
I + Re[ϒ] Im[ϒ]

Im[ϒ] I − Re[ϒ]

)
≥ 0. (4.126)

Here the real part of a matrix A is defined as Re[A] = (A+ A∗)/2, and similarly Im[A] =
−i(A− A∗)/2. Equation (4.126) is satisfied in turn iff the spectral norm of ϒ is bounded
from above by unity. That is,

‖ϒ‖2 ≡ λmax(ϒ†ϒ) ≤ 1, (4.127)

where λmax(A) denotes the maximum of the real parts of the eigenvalues ofA. In the present
context, the eigenvalues of A are real, of course, since ϒ†ϒ is Hermitian.

Exercise 4.13 Show that Eq. (4.126) is satisfied iff Eq. (4.127) is satisfied.
Hint: Consider the real symmetric matrix

X =
(

Re[ϒ] Im[ϒ]
Im[ϒ] −Re[ϒ]

)
. (4.128)

Show that the eigenvalues of X are symmetrically placed around the origin. Thus we will
have I +X ≥ 0 iff ‖X‖ ≤ 1. This in turn will be the case iff X2n converges as n→∞.
Show that

X2n =
(

Re[An] Im[An]
−Im[An] Re[An]

)
, (4.129)

where A = ϒ†ϒ , and hence show the desired result.

3 A positive semi-definite matrix A is an Hermitian matrix with no negative eigenvalues, indicated by A ≥ 0.
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Box 4.1 Gauge-invariance of SMEs

Consider the following transformation of a state vector:

|ψ(t)〉 → |φ〉 = exp[iχ (t)]|ψ(t)〉, (4.130)

where χ (t) is an arbitrary real function of time. This is known as a gauge transfor-
mation. It has no effect on any physical properties of the system. However, it can
radically change the appearance of a stochastic Schrödinger equation, since χ (t) may
be stochastic. Consider for example the simple SSE

d|ψ〉 =[−iĤ − 1
2 (x̂ −〈x̂〉)2

]
dt |ψ〉 + (x̂ −〈x̂〉)dZ∗|ψ〉, (4.131)

where dZ dZ∗ = dt and dZ2 = υ dt . Let the global phase χ obey the equation

dχ = f dZ∗ + f ∗ dZ, (4.132)

where f (t) is an arbitrary smooth function of time that may even be a function of |ψ〉
itself. Then

|φ〉 + d|φ〉 =(1+ i dχ − 1
2 dχ dχ

)
eiχ (t)(|ψ〉 + d|ψ〉) . (4.133)

The resultant equation for |φ〉 is

d|φ〉 = [−iĤ − Re
(
f 2υ∗ + |f |2)]dt |φ〉

− 1
2 (x̂ −〈x̂〉)(x̂ −〈x̂〉 + if υ∗ + if ∗

)
dt |φ〉

+ [(x̂ −〈x̂〉 + if ) dZ∗ + if ∗ dZ
] |φ〉, (4.134)

which appears quite different from Eq. (4.131) (think of the case f = −i〈x̂〉, for
example). By contrast, the SME is invariant under global phase changes:

dρ = −i dt[Ĥ , ρ]+ dt D[x̂]ρ +H[dZ∗ x̂]ρ. (4.135)

The above formulae apply for efficient detection (see Section 4.8 for a discussion of
inefficient detection and Section 6.5.2 for the required generalization). Thus we could write
the unravelling as a SSE rather than the SME (4.123). However, there are good reasons
to prefer the SME form, even for efficient detection. First, it is more general in that it can
describe the purification of an initially mixed state. Second, it is easier to see the relation
between the quantum trajectories and the master equation which the system still obeys on
average. Third, it is invariant under gauge transformations (see Box 4.1).

As expected from Section 4.4.3, the SME (4.123) can be derived directly from quantum
measurement theory. We describe the measurement result in the infinitesimal time interval
[t, t + dt) by a vector of complex numbers �J (t) ={Jk(t)}Kk=1. As functions of time, these are
continuous but not differentiable, and, following the examples of homodyne and heterodyne
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detection, we will call them currents. Explicitly, they are given by

Jk dt = dt
〈
ϒkj ĉ

†
j + ĉk

〉
+ dZk. (4.136)

We can prove this relation between the noise in the quantum trajectory and the noise in
the measurement record by using the measurement operators

M̂ �J = 1̂− iĤ dt − 1
2 ĉ

†
k ĉk dt + J ∗k ĉk dt. (4.137)

These obey the completeness relation∫
dµ
(
�J
)
M̂

†
�J M̂ �J = 1̂ (4.138)

if we choose dµ
(
�J
)

to be the measure yielding the ostensible moments∫
dµ
(
�J
)

(Jk dt) = 0, (4.139)∫
dµ
(
�J
)

(J ∗j dt)(Jk dt) = δjk dt, (4.140)∫
dµ
(
�J
)

(Jj dt)(Jk dt) = ϒjk dt. (4.141)

Exercise 4.14 Show this.

These moments are the same as those of the Wiener increment d �Z as defined above.
With this assignment of measurement operators M̂ �J and measure dµ

(
�J
)

we can easily

show that the expected value of the result �J is

E[Jk] =
∫

dµ
(
�J
)

Tr
[
M̂ �J ρM̂

†
�J

]
Jk =

〈
ϒkj ĉ

†
j + ĉk

〉
. (4.142)

This is consistent with the previous definition in Eq. (4.136). Furthermore, as in Sec-
tion 4.4.3, we can show that the second moments of �J dt are (to leading order in dt)
independent of the system state and can be calculated using dµ. In other words, they are
identical to the statistics of d �Z as defined above. This completes the proof that Eq. (4.136)
gives the correct probability for the result �J .

The next step is to derive the conditioned state of the system after the measurement. This
is given by

ρ + dρ �J =
M̂ �J ρM̂

†
�J

Tr
[
M̂ �J ρM̂

†
�J

] . (4.143)

Expanding to order dt gives

dρ �J = − 1
2

{
ĉ
†
k ĉk, ρ �J

}
dt + J ∗k dt ĉk ρ �J ĉ

†
l Jl dt + (J ∗k dt Jk − 1)

〈
ĉ
†
j ĉj

〉
ρ �J dt

− i[Ĥ , ρ �J ]dt +
[
J ∗k (ĉk −〈ĉk〉)ρ �J dt + ρ �J

(
ĉ
†
k −
〈
ĉ
†
k

〉)
Jk dt

]
×
(

1− J ∗l 〈ĉl〉dt − Jl

〈
ĉ
†
l

〉
dt
)
. (4.144)
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Exercise 4.15 Verify Eqs. (4.142) and (4.144).

Substituting into the above result (4.136) for �J yields the required equation (4.123). From
this it is again obvious that on average the system obeys the master equation (4.11).

Exercise 4.16 Verify that Eq. (4.144) gives Eq. (4.123). Also find the linear version of
Eq. (4.144) for the ostensible distribution used above.

4.6 Illustration on the Bloch sphere

Before proceeding further with the theory, we will pause to illustrate the different sorts
of quantum trajectories introduced above using a simple example. Perhaps the simplest
nontrivial open quantum system is the driven and damped two-level atom as introduced in
Section 3.3.1. Taking the bath temperature to be zero (n̄ = 0), the resonance fluorescence
master equation (3.36) is

ρ̇ = −i

[
�

2
σ̂x + �

2
σ̂z, ρ

]
+ γD[σ̂−]ρ. (4.145)

The solutions to this equation were the subject of Exercise 3.26. We now consider five
different unravellings of this master equation.

4.6.1 Direct photodetection

The state of a classically driven two-level atom conditioned on direct photodetection of
its resonance fluorescence was one of the inspirations for the development of the quantum
trajectory theory in optics [CSVR89, DCM92, DZR92]. The treatment here is restricted to
formulating the stochastic evolution in the manner of Section 4.2.2 and giving a closed-
form expression for the stationary probability distribution of states on the Bloch sphere
[WM93a].

Consider a two-level atom situated in an experimental apparatus such that the light it
emits is all collected and enters a detector. (In principle this could be achieved by placing
the atom at the focus of a large parabolic mirror, as shown in Fig. 4.3.) Then the direct
detection theory of Section 4.3.1 can be applied, with ĉ = √γ σ̂−. The state vector of the
atom conditioned on the photodetector count obeys the following SSE:

d|ψI (t)〉 =
dN (t)

 σ̂−√
〈σ̂ †
−σ̂−〉I (t)

− 1



− dt
(γ

2
[σ̂ †
−σ̂− − 〈σ̂ †

−σ̂−〉I (t)]+ iĤ
)|ψI (t)〉, (4.146)

where Ĥ = 1
2 (�σ̂x +�σ̂z) and the photocount increment dN (t) satisfies E[dN (t)] =

γ 〈σ̂ †
−σ̂−〉I (t)dt .
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γ

Fig. 4.3 A scheme for direct detection of an atom. The atom is placed at the focus of a parabolic
mirror so that all the fluorescence emitted by the atom is detected by the photodetector. Figure 1
adapted with permission from J. Gambetta et al., Phys. Rev. A 64, 042105, (2001). Copyrighted by
the American Physical Society.

With the conditioned subscript understood, one can write the conditioned state in terms
of the Euler angles (φ, θ) parameterizing the surface of the Bloch sphere. Since we are
assuming a pure state (see Box. 3.1),

|ψ(t)〉 = cg|g〉 + ce|e〉, (4.147)

these angles are given by

φ(t) = arg[cg(t)c∗e (t)], (4.148)

θ (t) = 2 arctan[|cg(t)/ce(t)|]. (4.149)

Exercise 4.17 Show this, using the usual relation between (φ, θ, r := 1) and (x, y, z), with
|0〉 = |g〉 and |1〉 = |e〉.
A typical stochastic trajectory is shown in Fig. 4.4. From an ensemble of these one could
obtain the stationary distribution ℘ss(φ, θ) for the states on the Bloch sphere under direct
detection.

In practice, it is easier to find the steady-state solution by returning to the SSE (4.146)
and ignoring normalization terms. Consider the evolution of the system following a pho-
todetection at time t = 0 so that |ψ(0)〉 = |g〉. Assuming that no further photodetections
take place, and omitting the normalization terms in Eq. (4.146), the state evolves via

d

dt
|ψ̃0(t)〉 = −

(γ
2
σ̂
†
−σ̂− + iĤ

)
|ψ̃0(t)〉. (4.150)

Here, the state vector has a state-matrix norm equal to the probability of it remaining in
this no-jump state, as discussed in Section 4.2.3.

On writing the unnormalized conditioned state vector as

|ψ̃0(t)〉 = c̃g(t)|g〉 + c̃e(t)|e〉, (4.151)

the solution satisfying c̃j (0) = δj,g is easily found to be

c̃g(t) = cos(αt)+ γ /2+ i�

2α
sin(αt), (4.152)

c̃e(t) = −i
�

2α
sin(αt), (4.153)
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Fig. 4.4 A typical trajectory for the conditioned state of an atom under direct detection in terms of
the Bloch angles φ and cos θ . The driving and detuning are � = 3 and � = 0.5, in units of the decay
rate γ .

where

2α = [(�− iγ /2)2 +�2
]1/2

(4.154)

is a complex number that reduces to the detuned Rabi frequency as γ → 0. One can still
use the definitions (4.148) and (4.149) with cj replaced by c̃j , since they are insensitive to
normalization. The significance of the normalization is that

S(t) = 〈ψ̃0(t)|ψ̃0(t)〉 = |c̃g(t)|2 + |c̃e(t)|2 (4.155)

is the probability of there being no detections from time 0 up to time t .

Exercise 4.18 Show that for the case � = 0, � > γ/2, the no-jump quantum trajectory
traverses the x = 0 great circle of the Bloch sphere.

Whenever a photodetection does occur, the system returns to its state at t = 0. It then takes
a finite time until the excited-state population becomes finite and the atom can re-emit. This
gives the obvious interpretation for the photon antibunching predicted [CW76] and observed
[KDM77] in the resonance fluorescence of a two-level atom. This is the phenomenon that,
for some time following one detection, another detection is less likely. The term was defined
to contrast with photon bunching (where following one detection another detection is more
likely), which was the only correlation that had hitherto been observed. The re-excitation of
the atom is always identical, so the stationary probability distribution on the Bloch sphere
℘ss(φ, θ ) is confined to the curve parameterized by

(
φ(t), θ (t)

)
, with each point weighted

by the survival probability S(t). (For � = 0 this curve wraps around on itself, so that each
point obtains multiple contributions to its weight.)
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4.6.2 Adaptive detection with a local oscillator

Recall that in Section 3.8.2 we discussed the conditions under which a probability distri-
bution of pure states {(π̂k, ℘k)}k could be physically realizable (PR). An ensemble is PR
if there is a continuous measurement scheme such that an experimenter implementing it
would be able to know, at some time far in the future from the initial preparation, that the
system is in one of the states π̂k , and the probability for each state would be ℘k .

From the preceding section it is evident that the stationary distribution ℘ss(φ, θ ) on
the surface of the Bloch sphere introduced in the preceding subsection is just such a PR
ensemble. The continuous measurement scheme which realizes the ensemble is, of course,
direct detection. As discussed above, in the case � = 0, ℘ss(φ, θ) is confined to the x = 0
great circle of the Bloch sphere.

In Section 3.8.3 we presented an example of a PR ensemble for the resonance fluorescence
master equation (4.145) (for � = 0) that was quite different from that in the preceding
section. Specifically, the ensemble contained just two pure states π̂±, equally weighted,
defined by the Bloch vectors u

v

w


±

=
±

√
1− y2

ss − z2
ss

yss

zss

. (4.156)

It turns out that this can be generalized for � �= 0, but it is a lot more complicated, so in
this section we retain � = 0. For large �, these points on the Bloch sphere approach the
antipodal pair at x = ±1.

Exercise 4.19 Show this, and show that in the same limit the direct detection ensemble
becomes equally spread over the x = 0 great circle.

Thus, these two PR ensembles are as different as they possibly can be.
In Section 3.8.3 we did not identify the measurement scheme that realizes this ensemble.

Since the elements of the ensemble are discrete, the unravelling must involve jumps. Since
it is not the direct detection unravelling of the preceding section, it must involve a local
oscillator, as introduced in Section 4.4.1. Since here we are using γ for the atomic decay
rate, in this section we use

√
γµ for the local oscillator amplitude. The no-jump and jump

measurement operators are then

M̂0(dt) = 1̂−
(

i
�

2
σ̂x + γ

2
σ̂
†
−σ̂− + µ∗γ σ̂− + γ |µ|2

2

)
dt, (4.157)

M̂1(dt) =
√
γ dt (σ̂− + µ). (4.158)

Direct detection is recovered by setting µ = 0.
If the atom radiates into a beam as considered previously, the above measurement can

be achieved by mixing it with a resonant local oscillator at a beam-splitter, as shown in
Fig. 4.5. The transmittance of the beam-splitter must be close to unity. The phase of µ is of
course defined relative to the field driving the atom, parameterized by �.
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Fig. 4.5 A scheme for adaptive detection. The fluorescence emitted by the atom is coherently mixed
with a weak local oscillator (LO) via a low-reflectivity beam-splitter (LRBS). The electro-optic
modulator (EOM) reverses the amplitude of the LO every time the photodetector fires. Figure 5
adapted with permission from J. Gambetta et al., Phys. Rev. A 64, 042105, (2001). Copyrighted by
the American Physical Society.

Since our aim is for the atom to remain in one of two fixed pure states, except when it
jumps, we must examine the fixed points (i.e. eigenstates) of the operator M̂0(dt). It turns
out that it has two fixed states, such that, if Re[µ] �= 0, one is stable and one unstable. For
Re[µ] > 0, the stable fixed state is

|ψ̃µ
s 〉 =

(√
�2 − 2i�γµ∗ − γ 2

4
+ iγ

2

)
|g〉 +�|e〉. (4.159)

Here the tilde denotes an unnormalized state. The corresponding eigenvalue is

λµs = −γ
1+ 2|µ|2

4
− i

2

√
�2 − 2i�γµ∗ − γ 2

4
. (4.160)

The unstable state and eigenvalue are found by replacing the square root by its negative.
It is unstable in the sense that its eigenvalue is more negative, indicating that its norm will
decay faster than that of the stable eigenstate. Thus, an initial superposition of these two
(linearly independent) states will, when normalized, evolve towards the stable eigenstate.

Let us say µ = µ+, with Re[µ+] > 0, and assume the system is in the appropriate stable
state |ψ+s 〉. When a jump occurs the new state of the system is proportional to

M̂+1 |ψ+s 〉 ∝ (σ̂− + µ+)|ψ+s 〉. (4.161)

The new state will obviously be different from |ψ+s 〉 and so will not remain fixed. This
is in contrast to what we are seeking, namely a system that will remain fixed between
jumps. However, let us imagine that, immediately following the detection, the value of the
local oscillator amplitude µ is changed to some new value, µ−. This is an example of an
adaptive measurement scheme as discussed in Section 2.5, in that the parameters defining
the measurement depend upon the past measurement record. We want this new µ− to be
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chosen such that the state (σ̂− + µ+)|ψ+s 〉 is a stable fixed point of the new M̂−0 (dt). The
conditions for this to be so will be examined below. If they are satisfied then the state will
remain fixed until another jump occurs. This time the new state will be proportional to

(σ̂− + µ−)(σ̂− + µ+)|ψ+s 〉 = [µ−µ+ + (µ− + µ+)σ̂−]|ψ+s 〉. (4.162)

If we want jumps between just two states then we require this to be proportional to |ψ+s 〉.
Clearly this will be so if and only if

µ− = −µ+. (4.163)

Writing µ+ = µ, we now return to the condition that (σ̂− + µ+)|ψ+s 〉 be the stable fixed
state of M̂−0 (dt). From Eq. (4.159), and using Eq. (4.163), this gives the relation√

�2 + 2i�γµ∗ − γ 2

4
=
√
�2 − 2i�γµ∗ − γ 2

4
− �

µ
. (4.164)

This has just two solutions,

µ± = ±1

2
, (4.165)

which, remarkably, are independent of the ratio γ /�. The stable and unstable fixed states
for this choice are

|ψ±s 〉 =
±�− iγ√
2�2 + γ 2

|g〉 − �√
2�2 + γ 2

|e〉, (4.166)

|ψ±u 〉 =
1√
2
|g〉 ± 1√

2
|e〉, (4.167)

and the corresponding eigenvalues are

λ±s = −
γ

8
± i�

2
, (4.168)

λ±u = −
5γ

8
∓ i�

2
. (4.169)

Exercise 4.20 Show that the stable eigenstates correspond to the two states π̂± defined by
the Bloch vectors in Eq. (4.156).

We have thus constructed the measurement scheme that realizes the two-state PR ensem-
ble for the two-level atom. Ignoring problems of collection and detector efficiency, it may
seem that this adaptive measurement scheme would not be much harder to implement
experimentally than homodyne detection; it requires simply an amplitude inversion of the
local oscillator after each detection. In fact, this is very challenging, since the feedback
delay must be very small compared with the characteristic time-scale of the system. For
a typical atom the decay time (γ−1 ∼ 10−8 s) is shorter than currently feasible times for
electronic feedback. Any experimental realization would have to use an atom with a very
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long lifetime, or some other equivalent effective two-level system with radiative transitions
in the optical frequency range.

Another difference from homodyne detection is that the adaptive detection has a very
small local oscillator intensity at the detector: it corresponds to half the photon flux of the
atom’s fluorescence if the atom were saturated. In either stable fixed state, the actual photon
flux entering the detector in this scheme is

〈ψ±s |(µ± + σ̂
†
−)(µ± + σ̂−)|ψ±s 〉 =

γ

4
, (4.170)

which is again independent of �/γ . This rate is also, of course, the rate for the system to
jump to the other stable fixed state, so that the two are equally occupied in steady state.

There are many similarities between the stochastic evolution under this adaptive unrav-
elling and the conditioned evolution of the atom under spectral detection, as investigated
in Ref. [WT99]. Spectral detection uses optical filters to resolve the different frequencies
of the photons emitted by the atom. As a consequence it is not possible to formulate a
trajectory for the quantum state of the atom alone. For details, see Ref. [WT99]. In the case
of a strongly driven atom (�� γ ), photons are emitted with frequencies approximately
equal to the atomic resonance frequency, ωa , and to the ‘sideband’ frequencies ωa ±�.
(This is the characteristic Mollow power spectrum of resonance fluorescence [Mol69].) In
the interaction frame these frequencies are 0 and±�, and can be seen in the imaginary parts
of (respectively) the eigenvalues −γ /2 and λ± appearing in the solution to the resonance
fluorescence master equation in Section 3.8.3. In this high-driving limit, the conditioned
atomic state can be made approximately pure, and it jumps between states close to the
σ̂x eigenstates, just as in the adaptive detection discussed above. In this case the total
detection rate is approximately γ /2, as expected for a strongly driven (saturated) atom. Of
these detections, half are in the peak of the power spectrum near resonance (which do not
give rise to state-changing jumps), while half are detections in the sidebands (which do).
Thus the rate of state-changing jumps is approximately γ /4, just as in the case of adaptive
detection.

4.6.3 Homodyne detection

We now turn to homodyne detection of the light emitted from the atom. Say the local
oscillator has phase �. Then, from Eq. (4.77), the system obeys the following SSE:

d|ψ̄J (t)〉 =
{
−
(γ

2
σ̂
†
−σ̂− + iĤ

)
dt

+
[
γ dt〈e−i�σ̂− + ei�σ̂

†
−〉J (t)+√γ dW (t)

]
e−i�σ̂−

}
|ψ̄J (t)〉, (4.171)

where dW (t) is a real infinitesimal Wiener increment.
In Fig. 4.6, we plot a typical trajectory on the Bloch sphere for two values of �, namely

0 and π/2, corresponding to measuring the quadrature of the spontaneously emitted light
in phase and in quadrature with the driving field, respectively. In both plots � = 3γ and
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Fig. 4.6 A segment of a trajectory of duration 10γ −1 of an atomic state on the Bloch sphere under
homodyne detection. The phase � of the local oscillator relative to the driving field is 0 in (a) and
π/2 in (b). The driving and detuning are � = 3 and � = 0.

� = 0, so the true distributions on the Bloch sphere are symmetric under reflection in the
y–z plane. The effect of the choice of measurement is dramatic and readily understandable.
The homodyne photocurrent from Eq. (4.75) is

Jhom(t) = γ (〈σ̂x〉cos�−〈σ̂y 〉sin�)+√γ ξ (t). (4.172)

When the local oscillator is in phase (� = 0), the deterministic part of the photocurrent
is proportional to x(t). Under this measurement, the atom tends towards states with well-
defined σ̂x . The eigenstates of σ̂x are stationary states of the driving Hamiltonian, so this
leads to trajectories that stay near these eigenstates for a relatively long time. This is seen
in Fig. 4.6(a), where φ tends to stay around 0 or π . In contrast, measuring the � = π/2
quadrature tries to force the system into an eigenstate of σ̂y . However, such an eigenstate
will be rapidly spun around the Bloch sphere by the driving Hamiltonian. This effect is
clearly seen in Fig. 4.6(b), where the trajectory is confined to the φ = ±π/2 great circle
(like that for direct detection).

The above explanation for the nature of the quantum trajectories is also useful for
understanding the noise spectra of the quadrature photocurrents in Eq. (4.172). The power
spectrum (see Section 4.5.1) of resonance fluorescence of a strongly driven two-level atom
has three peaks, as discussed in the preceding section. The central one is peaked at the
atomic frequency, and the two sidebands (each of half the area) are displaced by the Rabi
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Fig. 4.7 A power spectrum for resonance fluorescence with γ = 1, � = 0 and � = 10. Note that this
Rabi frequency is larger than that in Fig. 4.6, in order to show clearly the Mollow triplet.

frequency [Mol69], as shown in Fig. 4.7. It turns out that the spectrum of the in-phase
homodyne photocurrent (see Section 4.4.4) gives the central peak, while the quadrature
photocurrent gives the two sidebands [CWZ84]. This is readily explained qualitatively
from the evolution of the atomic state under homodyne measurements. When σ̂x is being
measured, it varies slowly, remaining near one eigenvalue on a time-scale like γ−1. This
gives rise to an exponentially decaying autocorrelation function for the photocurrent (4.172),
or a Lorentzian with width scaling as γ in the frequency domain. When σ̂y is measured,
it undergoes rapid sinusoidal variation at frequency �, with noise added at a rate γ . This
explains the side peaks.

4.6.4 Heterodyne detection

If the atomic fluorescence enters a perfect heterodyne detection device, then, from
Eq. (4.118), the system evolves via the SSE

|ψ̄J (t + dt)〉 =
{

1̂−
(γ

2
σ̂
†
−σ̂− + iĤ

)
dt

+
[
γ dt〈σ̂ †

−〉J (t)+√γ dZ(t)
]
σ̂−
}
|ψ̄J (t)〉, (4.173)

where here dZ(t) is the complex infinitesimal Wiener increment introduced in Eq. (4.109).
As for the previous case, the steady-state probability distribution can be represented

by an ensemble of points on the Bloch sphere drawn (at many different times) from a
single long-time solution of the SSE. In this case, the stationary probability distribution is
spread fairly well over the entire Bloch sphere. This can be understood as the result of the
two competing measurements (σ̂x and σ̂y) combined with the driving Hamiltonian causing
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rotation around the x axis. The complex photocurrent as defined in Eq. (4.117) is

Jhet(t) = γ 〈σ̂−〉 + √γ ζ (t), (4.174)

where ζ (t) = dZ(t)/dt . The spectrum of this photocurrent (the Fourier transform of the
two-time correlation function (4.206)) gives the complete Mollow triplet, since y is rotated
at frequency � with noise, while the dynamics of x is only noise.

4.7 Monitoring in the Heisenberg picture

4.7.1 Inputs and outputs

In this chapter so far we have described the monitoring of a quantum system in the
Schrödinger picture, treating the measurement results as a classical record. However, we
showed in Section 1.3.2 of Chapter 1 that it is possible to treat measurement results
as operators, enabling a description in the Heisenberg picture. Moreover, we showed in
Section 3.11 of Chapter 3 that the dynamics of open quantum systems can also be treated
in this picture. Thus it is not surprising that we can describe monitoring in the Heisenberg
picture. The crucial change from the earlier parts of this chapter is that now the measurement
results are represented by bath operators.

Recall from Eq. (3.172) that, in the Heisenberg picture, the increment in an arbitrary
system operator ŝ is

dŝ = dt
(
ĉ†ŝĉ − 1

2

{
ĉ†ĉ, ŝ

}+ i[Ĥ , ŝ]
)− [dB̂†

in(t)ĉ − ĉ† dB̂in(t), ŝ]. (4.175)

Now there was nothing in the derivation of this equation that required ŝ to be specifically
a system operator rather than a bath operator. Thus we could choose instead ŝ = b̂in(t), the
bath field operator interacting with the system at time t (see Section 3.11). Then, using
Eq. (4.175) and Eq. (3.160), we find

db̂in(t) = O(dt)+ ĉ. (4.176)

That is, the singularity of the bath commutation relations leads to a finite change in the bath
field operator b̂in in an infinitesimal time.

Because of this finite change, it is necessary to distinguish between the bath operator b̂in

interacting with the system at the beginning of the time interval [t, t + dt) and that at the
end, which we will denote b̂out(t). Ignoring infinitesimal terms, Eq. (4.176) implies that

b̂out = b̂in + ĉ. (4.177)

This is sometimes called the input–output relation [GC85]. To those unfamiliar with the
Heisenberg picture, it may appear odd that a system operator appears in the expression
for a bath operator, but this is just what one would expect with classical equations for
dynamical variables. As explained in Section 1.3.2, Heisenberg equations such as this are
the necessary counterpart to entanglement in the Schrödinger picture. If the system is an
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Fig. 4.8 A schematic diagram showing the relation between the input and output fields for a one-
sided cavity with one relevant mode described by the annihilation operator ĉ. The distance from the
cavity, z, appears as a time difference in the free field operators because we are using units such that
the speed of light is unity. The commutation relations say that (for z > 0) b̂in(t + z) and b̂out(t − z)
commute with any system operator at time t . This is readily understood from the figure, since these
field operators apply to parts of the field that also exist (at a point in space removed from the system)
at time t .

optical cavity, then this operator represents the field immediately after it has bounced off
the cavity mirror. This is shown in Fig. 4.8.

Just as b̂in(t) commutes with an arbitrary system operator ŝ(t ′) at an earlier time t ′ < t , it
can simply be shown that b̂out(t) commutes with the system operators at a later time t ′ > t .
As a consequence of this, the output field obeys the same commutation relations as the
input field,

[b̂out(t), b̂
†
out(t

′)] = δ(t − t ′), (4.178)

as required because it is a free field also.
Unlike b̂in(t) for earlier times, b̂out(t) for later times does depend on the state of the

system. In fact, a measurement of the output field will yield information about the system.
Monitoring of the system (as discussed above in the Schrödinger picture) corresponds
to measuring, in every interval [t, t + dt), a bath observable that is a function of b̂out(t).
Because b̂out(t) commutes with ŝ(t ′) for t ′ > t , the operator for the measurement record
(which relates to the system in the past) will commute with all system operators in the
present. That is, it is a c-number record insofar as the system is concerned. This fact is
crucial to the Heisenberg-picture approach to feedback to be developed in Chapter 5. We
will now examine how various monitoring schemes correspond to different operators for
the measurement record.

4.7.2 Direct photodetection

From Section 4.3.1, it is apparent that the observable for photon flux is

Îout(t) = b̂
†
out(t)b̂out(t). (4.179)
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It is easy to show that this is statistically identical to the classical photocurrent I (t) used in
Section 4.3.2. To see this, consider the Heisenberg operator dN̂out(t) = b̂

†
out(t)b̂out(t)dt for

the output field. This is found from Eq. (4.177) to be

dN̂out(t) = [ĉ†(t)+ ν̂†(t)][ĉ(t)+ ν̂(t)]dt. (4.180)

Here we are using ν̂(t) for b̂in(t) to emphasize that the input field is in the vacuum state
and so satisfies 〈ν̂(t)ν̂†(t ′)〉 = δ(t − t ′), with all other second-order moments vanishing. It
is then easy to show that

〈dN̂out(t)〉 = Tr[ĉ†(t)ĉ(t)ρ], (4.181)

dN̂out(t)
2 = dN̂out(t). (4.182)

These moments are identical to those of the photocount increment, Eqs. (4.41) and (4.13),
with a change from Schrödinger to Heisenberg picture.

The identity between the statistics of the output photon-flux operator Îout(t) and the
photocurrent I (t) does not stop at the single-time moments (4.181) and (4.182). As discussed
in Section 4.3.2, the most commonly calculated higher-order moment is the autocorrelation
function. In the Heisenberg picture this is defined as

F (2)(t, t + τ ) = 〈Îout(t + τ )Îout(t)〉. (4.183)

From the expression (4.180), this is found to be

F (2)(t, t + τ ) = 〈ĉ†(t)ĉ†(t + τ )ĉ(t + τ )ĉ(t)〉 + δ(τ )〈ĉ†(t)ĉ(t)〉. (4.184)

Exercise 4.21 Show this using the commutation relations (4.178) to put the field operators
in normal order. (Doing this eliminates the input field operators, because they act directly
on the vacuum, giving a null result.)

The autocorrelation function can be rewritten in the Schrödinger picture as follows. First,
recall that the average of a system operator at time t is

〈ŝ(t)〉 = TrS[ρ(t)ŝ] = TrS[TrB[W (t)]ŝ] = Tr[W (t)ŝ], (4.185)

where ρ(t) is the system (S) state matrix and W (t) is the state matrix for the system plus
bath (B). Now W (t) = Û (t)W (0)Û†(t), where in the Markovian approximation the unitary
evolution is such that

TrB[Û (t)W̃ (0)Û †(t)] = exp(Lt)ρ̃(0), (4.186)

where W̃ (0) = ρ̃(0)⊗ ρB(0) and ρ̃(0) is arbitrary. This result can be generalized to a
two-time correlation function for system operators ŝ and ẑ:

〈ŝ(t)ẑ(0)〉 = Tr[W (0)ŝ(t)ẑ(0)] (4.187)

= Tr[W (0)Û †(t)ŝÛ (t)ẑ(0)] (4.188)

= Tr[Û (t)ẑ(0)W (0)Û†(t)ŝ] (4.189)

= TrS
[
TrB[Û (t)ẑ(0)W (0)Û†(t)]ŝ

]
. (4.190)
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Using the Markov assumption with ρ̃(0) = ẑ(0)ρ(0),

〈ŝ(t)ẑ(0)〉 = TrS[ŝ exp(Lt)ẑρ(0)] = TrS[ŝρ̃(t)], (4.191)

where ρ̃(t) is the solution of the master equation with the given initial conditions. This is
sometimes known as the quantum regression theorem.

Exercise 4.22 Generalize the above result to two-time correlation functions of the form
〈x̂(0)ŝ(t)ẑ(0)〉.

Applying the result of this exercise to the above autocorrelation function (4.184) gives

F (2)(t, t + τ ) = Tr
[
ĉ†ĉeLτ ĉρ(t)ĉ†

]+ Tr
[
ĉ†ĉρ(t)

]
δ(τ ). (4.192)

This is identical to Eq. (4.50) obtained using the conditional evolution in Section 4.3.2.
In fact, any statistical comparison between the two will agree because Îout(t) and I (t) are
merely different representations of the same physical quantity. Conceptually, the two rep-
resentations are quite different. In the Heisenberg-operator derivation, the shot-noise term
(the delta function) in the autocorrelation function arises from the commutation relations
of the electromagnetic field. By contrast, the quantum trajectory model produces shot noise
because photodetections are discrete events, which is a far more intuitive explanation. As
we will see, some results may be more obvious using one method, others more obvious
with the other, so it is good to be familiar with both.

4.7.3 Homodyne detection

Adding a local oscillator to the output field transforms it to

b̂′out(t) = b̂out(t)+ γ = ĉ(t)+ ν̂(t)+ γ. (4.193)

On dropping the time arguments, the photon-flux operator for this field is

Î ′out = γ 2 + γ (ĉ + ĉ† + ν̂ + ν̂†)+ (ĉ† + ν̂†)(ĉ + ν̂). (4.194)

In the limit that γ →∞, the last term can be ignored for the homodyne photocurrent
operator,

Ĵ hom
out (t) ≡ lim

γ→∞
Î ′out(t)− γ 2

γ
= x̂(t)+ ξ̂ (t). (4.195)

Here, x̂ is the quadrature operator defined in Eq. (4.65) and ξ̂ (t) is the vacuum input operator

ξ̂ (t) = ν̂(t)+ ν̂†(t), (4.196)

which has statistics identical to those of the normalized Gaussian white noise for which the
same symbol is used.

Exercise 4.23 Convince yourself of this.
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The operator nature of ξ̂ (t) is evident only from its commutation relations with its conjugate
variable υ̂(t) = −iν̂(t)+ iν̂†(t):

[ξ̂ (t), υ̂(t ′)] = 2iδ(t − t ′). (4.197)

The output quadrature operator (4.195) evidently has the same single-time statistics as
the homodyne photocurrent operator (4.75), with a mean equal to the mean of x̂, and a
white-noise term. The two-time correlation function of the operator Ĵ hom

out (t) is defined by

F
(1)
hom(t, t + τ ) = 〈Ĵ hom

out (t + τ )Ĵ hom
out (t)〉. (4.198)

Using the commutation relations for the output field (4.178), this can be written as

F
(1)
hom(t, t + τ ) = 〈: x̂(t + τ )x̂(t) :〉 + δ(τ ), (4.199)

where the annihilation of the vacuum has been used as before. Here the colons denote time
and normal ordering of the operators ĉ and ĉ†. The meaning of this can be seen in the
Schrödinger picture:

F
(1)
hom(t, t + τ ) = Tr

[
x̂eLτ

(
ĉρ(t)+ ρ(t)ĉ†

)]+ δ(τ ), (4.200)

where L is as before and ρ(t) is the state of the system at time t , which is assumed known.
Again, this is in exact agreement with that calculated from the quantum trajectory

method in Section 4.4.4. The operator quantity Ĵ hom
out (t) has the same statistics as those of

the classical photocurrent Jhom(t). Again the different conceptual basis is reflected in the
origin of the delta function in the autocorrelation function: operator commutation relations
in the Heisenberg picture versus local oscillator shot noise from the quantum trajectories.

4.7.4 Heterodyne detection

The equivalence between the Heisenberg picture and quantum trajectory calculations of
the output field correlation functions applies for heterodyne detection in much the same
way as for homodyne detection. For variation, we construct the Heisenberg operator for
the ‘heterodyne photocurrent’ from two homodyne measurements, rather than from the
Fourier components of the heterodyne signal. To make two homodyne measurements, it is
necessary to use a 50 : 50 beam-splitter to divide the cavity output before the local oscillator
is added. This gives two output beams,

b̂±out =
√

1/2(ν̂ + ĉ ± µ̂). (4.201)

Here we have introduced an ancilla vacuum annihilation operator µ̂ that enters at the free
port of the beam-splitter.

Exercise 4.24 Show that

b̂
†
outb̂out = b̂

+†
out b̂

+
out + b̂

−†
out b̂

−
out, (4.202)

so that photon flux is preserved.
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Let the b̂+out beam enter a homodyne apparatus to measure the x quadrature, and the b̂−out

beam one to measure the y quadrature. Then the operators for the two photocurrents,
normalized with respect to the system signal, are

Ĵ xout = x̂ + [ν̂ + ν̂† + µ̂+ µ̂†], (4.203)

Ĵ
y
out = ŷ − i[ν̂ − ν̂† − µ̂+ µ̂†], (4.204)

where ŷ is defined in Eq. (4.65). Defining the complex heterodyne photocurrent as in Eq.
(4.116) gives

Ĵ het
out = ĉ + ν̂ + µ̂†. (4.205)

Exercise 4.25 Convince yourself that ζ̂ (t) = ν̂(t)+ µ̂†(t) has the same statistics as the
complex Gaussian noise ζ (t) defined in Section 4.6.4.

Thus, the operator (4.205) has the same statistics as the photocurrent (4.117). The autocor-
relation function

F
(1)
het (t, t + τ ) = 〈Ĵ het

out
†(t + τ )Ĵ het

out (t)〉, (4.206)

evaluates to

F
(1)
het (t, t + τ ) = 〈ĉ†(t + τ )ĉ(t)〉 + δ(τ ). (4.207)

Again, this is equal to the Schrödinger-picture expression (4.120).

4.7.5 Completely general dyne detection

In the Heisenberg picture, the completely general Lindblad evolution (4.122) becomes

dŝ = dt
(
ĉ
†
k ŝĉk − 1

2

{
ĉ
†
k ĉk, ŝ

}
+ i[Ĥ , ŝ]

)
− [dB̂†

k;in(t)ĉk − ĉ
†
k dB̂k;in(t), ŝ], (4.208)

where we are using the Einstein summation convention as before and dB̂k;in = b̂k;in dt where
the b̂k;in are independent vacuum field operators. The output field operators are

b̂k;out = b̂k;in + ĉk. (4.209)

Recall that for a completely general dyne unravelling the measurement result was a vector
of complex currents Jk(t) given by (4.136), where the noise correlations are defined by a
complex symmetric matrixϒ . In the Heisenberg picture the operators for these currents are

Ĵk = b̂k;out + ϒkj b̂
†
j ;out + Tkj â

†
j . (4.210)

Here âk are ancillary annihilation operators, which are also assumed to act on a vacuum
state, and obey the usual continuum-field commutation relations,

[âj (t), â†k (t ′)]dt = δjkδ(t − t ′). (4.211)
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These ancillary operators ensure that all of the components Ĵk commute with one another.
This is necessary since this vector operator represents an observable quantity. Assuming T
(a capital τ ) to be a symmetric matrix like ϒ , we find

[Ĵj , Ĵk]dt = ϒjk − ϒkj = 0, (4.212)

[Ĵj , Ĵ
†
k ]dt = δjk −ϒjlϒ

∗
lk − Tj lT

∗
lk. (4.213)

Thus we require the matrix T to satisfy

T∗T = I −ϒ∗ϒ. (4.214)

The right-hand side of this equation is always positive (see Section 4.5.2), so it is always
possible to find a suitable T.

From these definitions one can show that

Ĵk = ĉk +ϒkj ĉ
†
j + δĴk, (4.215)

where

δĴk = b̂k;in + ϒkj b̂
†
j ;in + Tkj â

†
j (4.216)

has a zero mean. Thus the mean of Ĵk is the same as that of the classical current in
Section 4.5.2. Also, one finds that

(δĴj dt)(δĴk dt)† = δjk dt, (4.217)

(δĴj dt)(δĴk dt) = ϒjk dt, (4.218)

the same correlations as for the noise in Section 4.5.2.

4.7.6 Relation to distribution functions

Obviously direct, homodyne and heterodyne detection are related to measurements of,
respectively, the intensity, one quadrature and the complex amplitude of the radiating dipole
of the system. Equally obviously, the measurements described are far removed from simple
measurements of these quantities, such as by the projective measurements. Nevertheless,
there must be some elementary relation between the two types of measurements for at
least some cases. For example, counting the number of photons in a cavity should give the
same results (statistically) irrespective of whether this is done by allowing the photons to
escape gradually through an end mirror into a photodetector or whether the measurement is
a projection of the cavity mode into photon-number eigenstates, provided that the system
Hamiltonian commutes with photon number. The purpose of this section is to establish a
relationship between quantum monitoring and simpler descriptions of measurements, for
the three schemes discussed. In all cases we must wait until t = ∞ for the measurement to
be complete.

For simplicity, we consider the case of a freely decaying optical cavity with unit linewidth,
so that ĉ = â with [â, â†] = 1. We will see that the Heisenberg-picture formalism is a
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powerful framework for establishing the relations we seek. In this picture, the dynamics of
the system is given by the quantum Langevin equation

dâ(t) = − 1
2 â(t)dt + ν̂(t)dt, (4.219)

which has the solution

â(t) = â(0)e−t/2 −
∫ t

0
e(s−t)/2ν̂(s)ds. (4.220)

Exercise 4.26 Verify these equations.

The output field is of course

b̂out(t) = â(t)+ ν̂(t). (4.221)

Photon-number distribution. We begin with photon counting. The most obvious difference
between a projective measurement of photon number and an external counting of escaped
photons from a freely decaying cavity is that the final state of the cavity mode is the
appropriate photon-number eigenstate in the first case and the vacuum in the second. The
latter result comes about because the counting time must be infinite to allow all photons to
escape. Although extra-cavity detection is not equivalent to projective detection, it should
give the same statistics in the infinite time limit.

The output photon flux is

Î (t) = [â†(t)+ ν̂†(t)][â(t)+ ν̂(t)], (4.222)

which using Eq. (4.220) evaluates to

Î (t) =
[
â†(0)e−t/2 −

∫ t

0
e(s−t)/2ν̂†(s)ds + ν̂†(t)

]
×
[
â(0)e−t/2 −

∫ t

0
e(s−t)/2ν̂(s)ds + ν̂(t)

]
. (4.223)

The operator for the total photocount is then

N̂ ≡
∫ ∞

0
Î (t)dt. (4.224)

On using integration by parts (we show this explicitly for the simpler cases of homodyne
detection below), it is possible to evaluate this as

N̂ = â†(0)â(0)+ n̂. (4.225)

Here n̂ contains only bath operators, and annihilates on the vacuum. Hence it commutes
with the first term and contributes nothing to the expectation value of any function of N̂ ,
provided that the bath is in a vacuum state. This confirms that the integral of the photocurrent
does indeed measure the operator â†â for the initial cavity state.

Quadrature distribution. Now consider homodyne detection. Unlike direct detection, one
should not simply integrate the photocurrent from zero to infinity because even when all
light has escaped the cavity the homodyne measurement continues to give a non-zero
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current (vacuum noise). Thus, for long times the additional current is merely adding noise
to the record. This can be circumvented by properly mode-matching the local oscillator to
the system. That is to say, by matching the decay rate, as well as the frequency, of the local
oscillator amplitude to that of the signal. Equivalently, the current could be electronically
multiplied by the appropriate factor and then integrated.

For the cavity decay in Eq. (4.220) the appropriately scaled homodyne current operator is

Ĵ hom
out (t) = e−t/2[x̂(t)+ ξ̂ (t)]. (4.226)

From Eq. (4.220), this is equal to

Ĵ hom
out (t) = e−t/2

[
x̂(0)e−t/2 −

∫ t

0
e(s−t)/2ξ̂ (s)ds + ξ̂ (t)

]
, (4.227)

and so

X̂ ≡
∫ ∞

0
Ĵ hom

out (t)dt (4.228)

= x̂(0)+
∫ ∞

0
e−t/2ξ̂ (t)dt −

∫ ∞
0

dt e−t
∫ t

0
es/2ξ̂ (s)ds. (4.229)

Using integration by parts on the last term, it is easy to show that it cancels out the
penultimate term, so the operator of the integrated photocurrent is simply

X̂ = x̂(0). (4.230)

Thus it is possible to measure a quadrature of the field by homodyne detection. Unlike the
case of direct detection, this derivation requires no assumptions about the statistics of the
bath field.

Husimi distribution. Heterodyne detection is different from direct and homodyne detection
in that it does not measure an Hermitian system operator. That is because it measures both
quadratures simultaneously. However, it does measure a normal operator (see Box 1.1). The
(normal) operator for the heterodyne photocurrent (4.205) is, with appropriate photocurrent
scaling factor,

Ĵ het
out (t) = e−t/2[â(t)+ ζ̂ (t)], (4.231)

where ζ̂ = ν̂ + µ̂†. Proceeding as above, the operator for the measurement result is

Â ≡
∫ ∞

0
Ĵ het

out (t)dt = â(0)+ ê†, (4.232)

where ê† = ∫∞0 e−t/2µ̂†(t)dt .

Exercise 4.27 Show that [ê†, ê] = −1 and hence show that Â commutes with its Hermitian
conjugate.

From this exercise it follows that Â is a normal operator, and hence there is no ambiguity
in the calculation of its moments. That is, all orderings are equivalent. The most convenient
operator ordering is one of normal ordering with respect to ê. (Recall that normal ordering,
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defined in Section A.5, has nothing to do with normal operators.) For a vacuum-state bath,
the expectation value of any expression normally ordered in ê will have zero contribution
from all terms involving ê. Now normal ordering with respect to ê is antinormal ordering
with respect to â. Thus the statistics of Â are the antinormally ordered statistics of â. As
shown in Section A.5, these statistics are those found from the so-called Husimi or Q
function,

Q(α)d2α = d2α

π
〈α|ρ|α〉, (4.233)

where |α〉 is a coherent state as usual.

Adaptive measurements. One should not conclude from the above analyses that the Heisen-
berg picture is necessarily always more powerful than the Schrödinger picture. Take, for
example, adaptive measurements, as considered in Sections 2.5 and 4.6.2. In these cases,
the measured currents are fed back to alter the future conditions of the measurement. This
leads to intractable nonlinear Heisenberg equations, even for a system as simple as a decay-
ing cavity [Wis95]. However, the problem can be tackled using linear quantum trajectory
theory as introduced in Section 4.4.3. By this method it is possible to obtain an exact
analytical treatment of the adaptive phase-estimation algorithm [Wis95, WK97, WK98]
implemented in the experiment [AAS+02] described in Section 2.6. This will be discussed
in detail in Section 7.9.

4.8 Imperfect detection

In all of the above we have considered detection under perfect conditions. That is, the
detectors were efficient, detecting all of the output field; the input field was in a pure state;
the detectors added no electronic noise to the measured signal; and the detectors did not
filter the measured signal. In reality some or all of these assumptions will be invalid, and this
means that an observer will not have access to perfect information about the system. Since
the quantum state of the system is the observer’s knowledge about the system, imperfect
knowledge means a different (more mixed) quantum state. In this section we consider each
of these imperfections in turn and derive the appropriate quantum trajectory to describe it.

4.8.1 Inefficient detection

The simplest sort of imperfection to describe is inefficiency. A photodetector of efficiency
η (with 0 ≤ η ≤ 1) can be modelled as a perfect detector detecting only a proportion η of
the output beam. Thus, we can split the general master equation Eq. (4.11) into

ρ̇ = −i[Ĥ , ρ]+ (1− η)D[ĉ]ρ +D[
√
η ĉ]ρ (4.234)

and unravel only the last term.
For direct detection, Eq. (4.40) is replaced by

dρI (t) = {dN (t)G[
√
η ĉ]+ dt H[−iĤ − η 1

2 ĉ
†ĉ]+ dt(1− η)D[ĉ]

}
ρI (t), (4.235)
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where now Eq. (4.41) becomes

E[dN (t)] = η Tr[ĉρ(t)ĉ†]dt. (4.236)

In this case a SSE does not exist because the conditioned state will not remain pure even if
it begins pure. Note that in the limit η→ 0 one obtains the unconditioned master equation.

For homodyne detection, the homodyne photocurrent is obtained simply by replacing ĉ
by
√
η ĉ to give

Jhom(t) = √η〈x̂〉J (t)+ ξ (t). (4.237)

Note that here the shot noise (the final term) remains normalized so as to give a unit
spectrum; other choices of normalization are also used. The SME (4.72) is modified to

dρJ = −i[Ĥ , ρJ (t)]dt +D[ĉ]ρJ (t)dt +√η dW (t)H[ĉ]ρJ (t). (4.238)

Again, there is no SSE. The generalization of the heterodyne SME (4.110) is left as an
exercise for the reader.

4.8.2 Detection with a white-noise input field

So far, we have considered optical measurements with the input in a vacuum, or coherent,
state. As explained in Section 4.3.3, the photon flux is infinite for an input bath in a more
general state, such as with thermal or squeezed white noise. This indicates that direct
detection is impossible (or at least useless, as explained in Section 4.3.3). However, the
output field quadrature operators are well defined even with white noise, because they are
only linear in the noise. Thus, field operators for homodyne- and heterodyne-detection
photocurrents can be defined without difficulty, simply by replacing the vacuum operator
ν̂ by the more general input bath operator b̂0. This indicates that it should be possible to
treat homodyne and heterodyne detection in such situations. In this section, we develop the
quantum trajectory theory for detection in the presence of white noise.

The homodyne-detection theory of Section 4.4 began with a finite local oscillator ampli-
tude γ , so that the quantum trajectories were jump-like. Diffusive trajectories were obtained
when the γ →∞ limit was taken. This approach would fail if the input field were contami-
nated by white noise, for the same reason as that rendering direct detection impossible with
white noise: the infinite photon flux due to the noise would swamp the signal. However, as
noted in Section 4.3.3, a physical noise source would not be truly white, and in any case
the response of the detector would give a cut-off to the flux. If the local oscillator were
made sufficiently intense, then the signal due to this would overcome that due to the noise.
Thus, in order to treat detection with white noise, it is necessary to begin with an infinitely
large local oscillator. Then one can assume that the homodyne detection effects an ideal
measurement of the instantaneous quadrature of the output field, without worrying about
individual jumps.



192 Quantum trajectories

Rather than doing a completely general derivation, we consider first the case of a white-
noise bath in a pure, but non-vacuum, state. That is, as in Section 3.11.2,

dB̂†(t)dB̂(t) = N dt, (4.239)

dB̂(t)dB̂(t) = M dt, (4.240)

[dB̂(t), dB̂†(t)] = dt, (4.241)

but the inequality (3.180) is replaced by the equality

|M|2 = N (N + 1). (4.242)

In this case the pure state of the bath, which we denote |M〉, obeys

[(N +M∗ + 1)b̂(t)− (N +M)b̂†(t)]|M〉 = 0. (4.243)

Exercise 4.28 From Eqs. (4.241)–(4.243), derive Eqs. (4.239) and (4.240).

Now replacing the vacuum bath state |0〉 by |M〉 in Eq. (4.36) and expanding the unitary
operator Û (dt) to second order yields

|�(t + dt)〉 = {1− 1
2 dt
[
(N + 1)ĉ†ĉ +Nĉĉ† −Mĉ†2 −M∗ĉ2

]
+ ĉ dB̂†(t)− ĉ† dB̂(t)

}|ψ(t)〉|M〉. (4.244)

Consider homodyne detection on the output. Any multiple of the operator in Eq. (4.243)
can be added to Eq. (4.244) without affecting it. Thus it is possible to replace dB† by

dB̂† + N +M∗ + 1

L
dB̂ − N +M

L
dB̂† = N +M∗ + 1

L
[dB̂† + dB̂] (4.245)

and dB̂ by

dB̂ − N +M∗ + 1

L
dB̂ + N +M

L
dB̂† = N +M

L
[dB̂† + dB̂], (4.246)

where

L = 2N +M∗ +M + 1. (4.247)

This yields

|�(t + dt)〉 = {1− 1
2 dt
[
(N + 1)ĉ†ĉ +Nĉĉ† −Mĉ†2 −M∗ĉ2

]
+ [ĉ(N +M∗ + 1

)
/L− ĉ†(N +M)/L

]}
× [dB̂†(t)+ dB̂(t)]

}|ψ(t)〉|M〉. (4.248)

Projecting onto eigenstates |J 〉 of the output quadrature b̂ + b̂† then gives the unnormal-
ized conditioned state

|ψ̃J (t + dt)〉 = {1− 1
2 dt
[
(N + 1)ĉ†ĉ +Nĉĉ† −Mĉ†2 −M∗ĉ2

]
+ J dt

[
ĉ
(
N +M∗ + 1

)
/L− ĉ†(N +M) /L

]}
× |ψ(t)〉

√
℘M

ost(J ), (4.249)
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where the state-matrix norm ℘M
ost(J ) gives the probability of obtaining the result J and the

ostensible probability distribution for J is

℘M
ost(J ) = |〈J |M〉|2 =

√
dt

2πL
exp(− 1

2J
2 dt/L). (4.250)

Note that from this ostensible distribution the variance of J 2 is L/dt , which, depending on
the modulus and argument of M , may be larger or smaller than its vacuum value of 1/dt .

Now, by following the method in Section 4.4.3, one obtains the following SSE for the
unnormalized state vector:

d|ψ̄J (t)〉 =
{
−dt

2

[
(N + 1)ĉ†ĉ +Nĉĉ† −Mĉ†2 −M∗ĉ2

]
+ J (t)dt

(
ĉ
N +M∗ + 1

L
− ĉ†

N +M

L

)}
|ψ̄J (t)〉, (4.251)

where the actual statistics of the homodyne photocurrent J are given by

Jhom(t) = 〈x̂(t)〉 +
√
Lξ (t), (4.252)

where ξ (t) = dW (t)/dt is white noise as usual. Note that the high-frequency spectrum of
the photocurrent is no longer unity, but L.

Turning Eq. (4.251) into an equation for ρ̄J = |ψ̄J 〉〈ψ̄J | and then normalizing it yields

dρJ (t) =
(

dt L+ 1√
L

dW (t)H
[
(N +M∗ + 1)ĉ − (N +M)ĉ†

])
ρJ (t), (4.253)

where the unconditional evolution is

Lρ = (N + 1)D[ĉ]ρ +ND[ĉ†]ρ + M

2
[ĉ†, [ĉ†, ρ]]+ M∗

2
[ĉ, [ĉ, ρ]]− i[Ĥ , ρ]. (4.254)

Exercise 4.29 Verify this.

The general case of an impure bath is now obtained simply by relaxing the equality in
Eq. (4.242) back to the inequality in Eq. (3.180).

Note that, even forM = 0, the quantum trajectory described by Eq. (4.253) is not simply
the homodyne quantum trajectory for a vacuum bath (4.72) with the addition of the thermal
terms

N
(
D[ĉ]+D[ĉ†]

)
ρ (4.255)

in the non-selective evolution. Rather, the conditioning term depends upon N and
involves both ĉ and ĉ†. In quantum optics, N is typically negligible, but for quantum-
electromechanical systems (see Section 3.10.1), N is not negligible. Thus, for continuous
measurement of such devices by electro-mechanical means, it may be necessary to apply a
SME of form similar to Eq. (4.253).

From this conditioning equation and the expressions for the photocurrent, it is easy to
find the two-time correlation function for the output field using the method of Section 4.4.4.
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The result is

F
(1)
hom(t, t + τ ) = E[Jhom(t + τ )Jhom(t)] (4.256)

= Tr
[
(ĉ + ĉ†)eLτ

{
(N +M∗ + 1)ĉρ(t)− (N +M)ĉ†ρ(t)

+ (N +M + 1)ρ(t)ĉ† − (N +M∗)ρ(t)ĉ
}]+ Lδ(τ ). (4.257)

Note that, unlike in the case of a vacuum input, there is no simple relationship between this
formula and the Glauber coherence functions.

This correlation function could be derived from the Heisenberg field operators. The
relevant expression is

〈[x̂(t + τ )+ b̂in(t + τ )+ b̂†in(t + τ )][x̂(t)+ b̂in(t)+ b̂†in(t)]〉. (4.258)

We will not attempt to prove that this evaluates to Eq. (4.257), because it is considerably
more difficult than with a vacuum input b̂in = ν̂. The reason for this is that it is impossible
to choose an operator ordering such that the contributions due to the bath input vanish. The
necessary method would have to be more akin to that used in obtaining Eq. (4.257), where
the stochastic equation analogous to the SME is the quantum Langevin equation (3.181).

4.8.3 Detection with dark noise

The next sort of imperfection we consider is that of dark noise in the detector. This
terminology is used for electronic noise generated within the detector because it is present
even when no field illuminates the detector (i.e. in the dark). For simplicity we will treat
only the case of detection of the homodyne type. Once again, it is convenient to use the
approach of Section 4.4.3. We use the linear SME (4.91)

dρ̄ = dt{Lρ̄ + J0(t)[ĉρ̄ + H.c.]}, (4.259)

whereL = H[−iĤ ]+D[ĉ]. This corresponds to detection by an ideal detector with current
J0 having an ostensible distribution corresponding to Gaussian white noise. We model the
addition of dark noise by setting the output of the realistic detector to be the current

J (t)dt = [J0(t)dt +
√
N dW1]/

√
1+N, (4.260)

where dW1 is an independent Wiener increment and N is the dark-noise power relative to
the shot noise. Note that we have included the normalization factor so that the ostensible
distribution for J (t) is also that of normalized Gaussian white noise.

The problem is to determine the quantum trajectory for the system state ρJ conditioned
on Eq. (4.260), rather than that conditioned on the ideal current J0. To proceed, we rewrite
J0 as

J0(t)dt = [J (t)dt +
√
N dW ′(t)]/

√
1+N, (4.261)
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where

dW ′ = (
√
NJ0 dt − dW1)/

√
1+N (4.262)

is ostensibly a Wiener increment and is independent of J (t).

Exercise 4.30 Verify that (J dt)2 = (dW ′)2 = dt and that (J dt)dW ′ = 0.

Substituting this into Eq. (4.259) yields

dρ̄ = Lρ̄ dt + (1+N )−1/2[J (t)dt +
√
N dW ′][ĉρ̄ + H.c.]. (4.263)

Now we can average over the unobserved noise to get

dρ̄ = Lρ̄ dt + (1+N )−1/2J (t)dt[ĉρ̄ + H.c.]. (4.264)

Converting this into a nonlinear SME for the normalized state matrix gives

dρ = Lρ dt +√η dW (t)H[ĉ]ρ, (4.265)

where η ≡ 1/(1+N ) and dW (t) is the Gaussian white noise which appears in the actual
photocurrent:

J (t) = √η〈ĉ + ĉ†〉 + dW (t)/dt. (4.266)

In comparison with Section 4.8.1 we see that the addition of Gaussian white noise to the
photocurrent before the experimenter has access to it is exactly equivalent to an inefficient
homodyne detector.

For direct detection, dark noise is not the same as an inefficiency. Modelling it is actually
more akin to the methods of the following subsection, explicitly involving the detector. The
interested reader is referred to Refs. [WW03a, WW03b].

4.8.4 Detectors with a finite bandwidth

The final sort of detector imperfection we consider is a finite detector bandwidth. By
contrast with dark noise, this produces something quite different from what we have seen
before. Specifically, it leads to a non-Markovian quantum trajectory. The system still obeys
a Markovian master equation on average, but, because the observer has access only to a
filtered output from the system, the information the observer needs to update their system
state ρ(t) is not contained solely in ρ(t) and the measurement result in the infinitesimal
interval [t, t + dt). We will see instead that the observer must keep track of a joint state
of the quantum system and the classical detector, in which there are correlations between
these two systems.

Actually, all of these remarks apply only if the realistic detector adds noise to the output of
an ideal homodyne detector (as in the preceding section) as well as filtering it. For example,
say the output of the ideal detector was J (t), and the output of the realistic detector was put
through a low-pass filter of bandwidth B:

Q(t) =
∫ t

−∞
Be−B(t−s)J (s)ds. (4.267)
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Fig. 4.9 A schematic diagram of the model for simple homodyne detection by a realistic photoreceiver.
The realistic photoreceiver is modelled by a hypothetical ideal photoreciever, the output J (t) of which
is passed through a low-pass filter to give Q(t). White noise

√
N dW/dt is added to this to yield the

observable output V (t) of the realistic photoreceiver.

Then an observer could obtain J from Q simply as

J (t) = Q(t)+Q̇ (t)/B. (4.268)

Thus, the quantum state conditioned on Q(t) is the same as that conditioned on J (t).
However a nontrivial result is obtained if we say that the output is

V (t) = Q(t)+
√
N dW1(t)/dt, (4.269)

where dW1 is an independent Wiener increment. This is shown in Fig. 4.9
An equation of the form of Eq. (4.269) can be derived by considering the output of a

realistic homodyne detector, called a photoreceiver. This consists of a p–i–n photodiode
(which acts as an ideal detector, apart from a small inefficiency), which produces a current
∝J that is fed into an operational amplifier set up as a transimpedance amplifier. This has
a low effective input impedance, so the diode acts as a current source, and J is converted
into a charge ∝Q on a capacitor of capacitance C in parallel with the feedback resistor of
resistance R. The bandwidth B in Eq. (4.267) is equal to 1/(RC). The resistor, being at a
finite temperature, introduces Johnson noise with power ∝N into the amplifier output V ,
which is what the observer can see. For details, see Ref. [WW03a].

The general method we adopt is the following. First, we determine the SME for the state
of the quantum system conditioned on J . Then we determine a stochastic Fokker–Planck
equation (FPE) (see Section B.5) for the state of the detector. This is represented by ℘(q),
the probability distribution forQ(t), and also depends upon J . Next we consider℘V (q), the
conditioned classical state based on our observation of V , which involves another stochastic
process. Finally, we combine all of these equations together to derive an equation for the
state of a supersystem

ρV (q) = EJ [ρJ℘J
V (q)]. (4.270)
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Here the J superscript represents dependence upon the unobservable microscopic current
J . This is the variable which is averaged over to find the expectation value. From this
equation we can obtain our state of knowledge of the system, conditioned on V , as

ρV =
∫

dq ρV (q). (4.271)

Similarly, our state of knowledge of the detector is

℘V (q) = Tr[ρV (q)] . (4.272)

Note, however, that ρ(q) contains more information than do ρ and ℘(q) combined, because
of correlations between the quantum system and the classical detector.

The ideal stochastic master equation. As in the previous cases of imperfect detection, it is
convenient to use the linear form of the SME as in Section 4.4.3. For a detector that is ideal
apart from an efficiency η, this is

dρ̄J = Lρ̄J dt +√η[J (t)dt](ĉρ̄J + ρ̄J ĉ†), (4.273)

where the ostensible distribution for the current J (t) is that of Gaussian white noise.

The stochastic FPE for the detector. The detector state is given by ℘(q), the probability
distribution for Q. From Eq. (4.267), Q obeys the SDE

dQ = −B[Q− J (t)]dt, (4.274)

where J as given above satisfies (J dt)2 = dt . From Section B.5, the probability distribution
℘(q) obeys the stochastic Fokker–Planck equation (FPE)

d℘J (q) =
{
B

∂

∂q
[q − J (t)]dt + 1

2
B2 ∂2

(∂q)2
dt

}
℘J (q). (4.275)

This assumes knowledge of J , as shown explicitly by the superscript. Note that this equation
has the solution

℘J (q) = δ(q −QJ ), (4.276)

where QJ is the solution of Eq. (4.274). It is only later, when we average over J , that we
will obtain an equation with diffusion leading to a non-singular distribution. If we were to
do this at this stage we would derive a FPE of the usual (deterministic) type, without the
J -dependent term in Eq. (4.275).

The Zakai equation for the detector. Now we consider how℘(q) changes when the observer
obtains the information in V . That is, we determine the conditioned state by Bayesian
inference:

℘V (q) ≡ ℘(q|V ) = ℘(V |q)℘(q)

℘(V )
. (4.277)

From Eq. (4.269), in any infinitesimal time interval, the noise in V is infinitely greater
than the signal. Specifically, the root-mean-square noise in an interval of duration dt is
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√
N/dt , while the signal is Q. Thus, the amount of information about Q contained in V (t)

is infinitesimal, and hence the change from ℘(q) to ℘V (q) is infinitesimal, of order
√

dt .
This means that it is possible to derive a stochastic differential equation for ℘V (q). This
is called a Kushner–Stratonovich equation (KSE). Such a KSE is exactly analogous to the
stochastic master equation describing the update of an observer’s knowledge of a quantum
system.

Just as in the quantum case one can derive a linear version of the SME for an unnormal-
ized state ρ̄, one can derive a linear version of the KSE for an unnormalized probability
distribution ℘̄V (q). This involves choosing an ostensible distribution ℘ost(V ), such as
℘ost(V ) = ℘(V |q := 0). Then

℘̄V (q) = ℘(V |q)℘̄(q)

℘ost(V )
(4.278)

has the interpretation that ℘ost(V )
∫

dq ℘̄V (q) is the actual probability distribution for V .
Note the analogy with the quantum case in Section 4.4.3, where a trace rather than an
integral is used (see also Table 1.1). The linear version of the KSE is called the Zakai
equation and it will be convenient to use it in our derivation.

From Eq. (4.269), the distribution of V given that Q = q is

℘(V |q) = [dt/(2πN )]1/2 exp[−(V − q)2 dt/(2N )]. (4.279)

Hence, with the above choice,

℘ost(V ) = [dt/(2πN )]1/2 exp[−V 2 dt/(2N )], (4.280)

and the ratio multiplying ℘̄(q) in Eq. (4.278) is

exp[(2V q − q2)dt/(2N )]. (4.281)

Now the width of℘(q) will not depend upon dt (as we will see), so we can assume that℘(q)
has support that is finite. Hence the q in Eq. (4.281) can be assumed finite. By contrast, V is
of order 1/

√
dt , as explained above. Thus, the leading term in the exponent of Eq. (4.281)

is V q/(dt N ), and this is of order
√

dt . Expanding the exponent to leading order gives

℘̄V (q) = [1+ qV (t)dt/N]℘̄(q). (4.282)

Expressing this in terms of differentials, we have the Zakai equation

d℘̄V (q) = (1/
√
N )[V (t)dt/

√
N ]q℘̄(q), (4.283)

where V (t)dt/
√
N has the ostensible distribution of a Wiener process.

The joint stochastic equation. We now combine the three stochastic equations we have
derived above (the SME for the system, the stochastic FPE for the detector and the Zakai
equation for the detector) to obtain a joint stochastic equation. We define

ρ̄JV (q) = ρ̄J ℘̄J
V (q). (4.284)
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On introducing a time-argument for ease of presentation, we have

ρ̄JV (q; t + dt) = [1 + qV (t)dt/N][℘J (q; t) + d℘J (q; t)][ρ̄J (t) + dρ̄J (t)], (4.285)

where we have used Eq. (4.282), and d℘J (q; t) is given by Eq. (4.275) and dρ̄J (t) by
Eq. (4.273). By expanding these out we find

dρ̄JV (q) = dt

{
B

∂

∂q
[q − J (t)]+ 1

2
B2 ∂2

(∂q)2
+ L

}
ρ̄J (q)

+√η[J (t)dt]

{
1− [J (t)dt]B

∂

∂q

}
[ĉρ̄J (q)+ ρ̄J (q)ĉ†]

+ (1/
√
N )[V (t)dt/

√
N ]qρ̄J (q). (4.286)

Averaging over unobserved processes. By construction, the joint stochastic equation in
Eq. (4.286) will preserve the factorization of ρ̄J (q) in the definition Eq. (4.284). This is
because this equation assumes that J , the output of the ideal (apart from its inefficiency)
detector, is known. In practice, the experimenter knows only V , the output of the realistic
detector. Therefore we should average over J . Since we are using a linear SME, this means
using the ostensible distribution for Jdt in which it has a mean of zero and a variance of
dt . Thus we obtain

dρ̄V (q) = dt

{
B

∂

∂q
q + 1

2
B2 ∂2

(∂q)2
+ L

}
ρ̄(q)

− dt
√
ηB

∂

∂q
[ĉρ̄(q)+ ρ̄(q)ĉ†]

+ (1/
√
N )[V (t)dt/

√
N ]qρ̄(q). (4.287)

We call this the superoperator Zakai equation.

The superoperator Kushner–Stratonovich equation. Let ρ̄(q) at the start of the interval be
normalized. That is, let it equal ρ(q), where∫ ∞

−∞
dq Tr[ρ(q)] = 1. (4.288)

Then the infinitesimally evolved unnormalized state determines the actual distribution for
V according to

℘(V ) = ℘ost(V )
∫ ∞
−∞

dq Tr[ρ(q)+ dρ̄V (q)] . (4.289)

Using the same arguments as in Section 4.4.3, we see that the actual statistics for V are

V dt = 〈Q〉dt +
√
N dW (t), (4.290)

where

〈Q〉 =
∫ ∞
−∞

dq Tr[ρ(q)] q. (4.291)
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Note that dW (t) is not the same as dW1(t) in Eq. (4.269). Specifically,
√
N dW =

√
N dW1 + (Q−〈Q〉). (4.292)

The realistic observer cannot find dW1 from dW , since that observer does not know Q.
The final step is to obtain an equation for the normalized state, using the actual distribution

for V . If we again assume that the state is normalized at the start of the interval, we find

dρV (q) = ρ(q)+ dρ̄V (q)∫
dq Tr[ρ(q)+ dρ̄V (q)]

− ρ(q). (4.293)

Now taking the trace and integral of Eq. (4.287) gives zero for every term except for the
last, so the denominator evaluates to

1+ (1/
√
N )[V (t)dt/

√
N ]〈Q〉. (4.294)

By expanding the reciprocal of this to second order and using Eq. (4.290) to replace
[V (t)dt/

√
N ]2 by dt , we find

dρV (q) = dt

{
B

∂

∂q
q + 1

2
B2 ∂2

(∂q)2
+ L

}
ρV (q)

− dt
√
ηB

∂

∂q
[ĉρV (q)+ ρV (q)ĉ†]

+ (1/
√
N )dW (t)(q − 〈Q〉)ρV (q). (4.295)

Exercise 4.31 Work this all through explicitly.

We call Eq. (4.295) a superoperator Kushner–Stratonovich equation. Note that we have
placed the V subscript on the state on the right hand side, because typically this will be
conditioned on earlier measurements of the output V . The first line describes the evolution
of the detector and quantum system separately. The second line describes the coupling of
the system to the detector. The third line describes the acquisition of knowledge about the
detector from its output Eq. (4.290). This term has the typical form of the information-
gathering part of the classical Kushner–Stratonovich equation. Here this information also
tells us about the quantum system ρV =

∫∞
−∞ dq ρV (q), because of the correlations between

the system and the detector caused by their coupling.
If one ignores the output of the detector, then one obtains the unconditioned evolution

equation

dρ(q) = dt

{
B

∂

∂q
q + 1

2
B2 ∂2

(∂q)2
+ L

}
ρ(q)

− dt
√
ηB

∂

∂q
[ĉρ(q)+ ρ(q)ĉ†]. (4.296)

The coupling term here will still generate correlations between the system and the detector.
Note, however, that this coupling does not cause any back-action on the system, only
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forward-action on the detector. This can be verified by showing that the unconditioned
system state ρ = ∫∞−∞ dq ρ(q) obeys the original master equation

ρ̇ = Lρ = −i[Ĥ , ρ]+D[ĉ]ρ. (4.297)

Exercise 4.32 Verify this, using the fact that ℘(q), and hence ρ(q), can be assumed to go
smoothly to zero as q →±∞.

The superoperator Kushner–Stratonovich equation is clearly considerably more compli-
cated than the stochastic master equations used to describe other imperfections in detec-
tion. In general it is possible only to simulate it numerically. (One technique is given in
Ref. [WW03b], where it is applied to the homodyne detection of a two-level atom.) Nev-
ertheless, it is possible to study some of its properties analytically [WW03a, WW03b].
From these, some general features of the quantum trajectories this equation generates can
be identified. First, in the limit B →∞, the detector simply adds dark noise and the appro-
priate SME (4.265) with effective efficiency η/(1+N )) can be rederived. Second, for B
finite and N � 1, the detector has an effective bandwidth of

Beff = B/
√
N, (4.298)

which is much greater than B. That is, the detector is insensitive to changes in the system
on a time-scale less than

√
N/B. In the limit N → 0 the effective bandwidth becomes

infinite and the noise becomes zero, so the detector is perfect (apart from η). That is, the
quantum trajectories reduce to those of the SME (4.238), as expected from the arguments
at the beginning of this subsection.

4.9 Continuous measurement in mesoscopic electronics

4.9.1 Monitoring a single quantum dot

In Section 3.5 we discussed the irreversible dynamics of a single-electron quantum dot
coupled to two fermionic reservoirs. Experiments using a two-dimensional electron gas,
confined to the interface between GaAs and AlGaAs and further confined using surface
gates, can be configured to enable real-time monitoring of tunnelling electrons [LJP+03,
BDD05, VES+04, SJG+07]. In this section we will consider a model of such an experiment.

Physical model. A quantum point contact or QPC is the simplest mesoscopic tunnelling
device and consists of two fermionic reservoirs connected by a single electrostatically
defined tunnelling barrier [BB00]. A QPC can be used as a sensitive electrometer if the
tunnelling barrier is modulated by the charge on a nearby quantum dot.

We will consider the device shown in Fig. 4.10. A quantum dot is connected to two Fermi
reservoirs biased so that electrons can tunnel onto the dot from the left reservoir and off the
dot onto the right reservoir. Close to the quantum dot is the QPC. As the electron moves
into the quantum dot it increases the height of the tunnel barrier for the nearby QPC. In
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Fig. 4.10 (a) A quantum dot with a single-electron quasibound state is connected to two Fermi
reservoirs, a source (S) and drain (D) by tunnel junctions. Tunnelling through the quantum dot
modulates the tunnelling current through a quantum point contact. (b) An experimental realization
using potentials (defined by surface gates) in a GaAs/AlGaAs two-dimensional electron-gas system.
Part (b) is reprinted by permission from Macmillan Publishers Ltd, Nature Physics, E. V. Sukhorukov
et al., 3, 243, Fig. 1(a), copyright 2007.

this way the modulated current through the QPC can be used continuously to monitor the
occupation of the dot. We will follow the treatment given in Ref. [GM01].

The irreversible dynamics of the tunnelling though a single quasibound state on a quantum
dot from source to drain is treated in Section 3.5. We assume here that the interaction
of the dot with the QPC is weak, and hence does not significantly change the master
equation derived there. Here we need a model to describe the tunnnelling current through
the QPC and its interaction with the quantum dot. We use the following Hamiltonian
(with � = 1):

Ĥ = ĤQD+leads + ĤQPC + Ĥcoup. (4.299)

Here ĤQD+leads is as in Eq. (3.64), and describes the tunnelling of electrons from the source
to the dot and from the dot to the drain. This leads to the master equation (3.73) in which
the tunnelling rate from source to dot is γL and that from dot to drain is γR . The new
Hamiltonian terms in this chapter are

ĤQPC =
∑
k

(
ωL
k â

†
LkâLk + ωR

k â
†
RkâRk

)
+
∑
k,q

(
τkq â

†
LkâRq + τ ∗qkâ

†
RqâLk

)
, (4.300)

Ĥcoup =
∑
k,q

ĉ†ĉ
(
χkq â

†
LkâRq + χ∗qkâ

†
RqâLk

)
. (4.301)

Here, as in Section 3.5, ĉ is the electron annihilation operator for the quantum dot. The
Hamiltonian for the QPC detector is represented by ĤQPC, in which âLk , âRk and ωL

k , ωR
k

are, respectively, the electron (fermionic) annihilation operators and energies for the left
and right reservoir modes for the QPC at wave number k. Also, there is tunnelling between
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these modes with amplitudes τkq . Finally, Eq. (4.301) describes the interaction between the
detector and the dot: when the dot contains an electron, the effective tunnelling amplitudes
of the QPC detector change from τkq to τkq + χkq .

In the interaction frame and Markovian approximation, the (unconditional) zero-
temperature master equation of the reduced state matrix for the quantum-dot system is
[Gur97, GMWS01]

ρ̇ (t) = γLD[ĉ†]ρ + γRD[ĉ]ρ +D[τ̃ + χ̃ n̂]ρ(t) (4.302)

≡ Lρ(t), (4.303)

where n̂ = ĉ†ĉ is the occupation-number operator for the dot, τ̃ = ατ00 and χ̃ = αχ00.
Here τ00 and χ00 are the tunnelling amplitudes for energies near the chemical poten-
tials (µL and µR = µL − eV in the left and right reservoirs, respectively), while α2 =
2π (µL − µR)gLgR , where gL and gR are the appropriate densities of states for the
reservoirs.

Physically, the presence of the electron in the dot raises the effective tunnelling barrier of
the QPC due to electrostatic repulsion. As a consequence, the effective tunnelling amplitude
through the QPC becomes lower, i.e. D′ = |τ̃ + χ̃ |2 < D = |τ̃ |2. This sets a condition on
the relative phase θ between χ̃ and τ̃ : cos θ < −|χ̃ |/(2|τ̃ |).

The unconditional dynamics of the number of electrons on the dot is unchanged by the
presence of the QPC, and so is given by Eq. (3.74), which we reproduce here:

d〈n̂〉
dt
= γL(1− 〈n̂〉)− γR〈n̂〉. (4.304)

This is because the Hamiltonian describing the interaction between the dot and the QPC
commutes with the number operator n̂ – the measurement is a QND measurement of
n̂. However, if we ask for the conditional mean occupation of the dot given an observed
current through the QPC, we do find a (stochastic) dependence on this current, as we will see
later.

Exercise 4.33 Show that the stationary solution to Eq. (4.302) is

ρss = γL

γL + γR
|1〉〈1| + γR

γL + γR
|0〉〈0|, (4.305)

and that this is consistent with the stationary solution of Eq. (4.304).

Currents and correlations. It is important to distinguish the two classical stochastic currents
through this system: the current I (t) through the QPC and the current J (t) through the
quantum dot. Equation (4.302) describes the evolution of the reduced state matrix of
the quantum dot when these classical stochastic processes are averaged over. To study the
stochastic evolution of the quantum-dot state, conditioned on a particular measurement
realization, we need the conditional master equation. We first define the relevant point
processes that are the source of the classically observed stochastic currents.
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For the tunnelling onto and off the dot, we define two point processes:

[dMb
c (t)]2 = dMb

c (t), (4.306)

E[dML
c (t)] = γL〈(1− n̂)〉c(t)dt = γL Tr

[
J [ĉ†]ρc(t)

]
dt, (4.307)

E[dMR
c (t)] = γR〈n̂〉c(t)dt = γRTr[J [ĉ]ρc(t)]dt. (4.308)

Here b takes the symbolic value L or R and we use the subscript c to emphasize that the
quantities are conditioned upon previous observations (detection records) of the occurrences
of electrons tunnelling through the quantum dot and also tunnelling through the QPC barrier
(see below). The current through the dot is given by the classical stochastic process

J (t)dt =[eL dML
c (t)+ eR dMR

c (t)
]
, (4.309)

where eL and eR are as defined in Section 3.5 and sum to e.
Next, we define the point process for tunnelling through the QPC:

[dNc(t)]2 = dNc(t), (4.310)

E[dNc(t)] = Tr[J [τ̃ + n̂χ̃]ρc] = [D + (D′ −D)〈n̂〉c(t)]dt. (4.311)

This is related to the current through the QPC simply by

I (t)dt = e dNc(t). (4.312)

The expected current is thus eD when the dot is empty and eD′ when the dot is occupied.

Exercise 4.34 Show that the steady-state currents through the quantum dot and QPC are,
respectively,

Jss = eγLγR

γL + γR
, (4.313)

Iss = eD

(
γR

γL + γR

)
+ eD′

(
γL

γL + γR

)
. (4.314)

(Note that the expression for Jss agrees with Eq. (3.77) from Section 3.5.)

The SME describing the quantum-dot state conditioned on the above three point processes
is easily derived using techniques similar to those described in Section 4.3. The result is

dρc = dML(t)G[
√
γLĉ

†]ρc + dMR(t)G[
√
γRĉ]ρc + dN (t)G[τ̃ + χ̃ n̂]ρc

− dt 1
2H
[
γLĉĉ

† + γRĉ
†ĉ + (D′ −D)n̂

]
ρc. (4.315)

Equation (4.315) assumes that we can monitor the current through the quantum dot
sufficiently quickly and accurately to distinguish the current pulses associated with the
processes dMb(t). In this case, the dot occupation 〈n〉c(t) will jump between the values 0
and 1. It makes the transition 0→ 1 when an electron tunnels onto the dot, which occurs
at rate γL. It makes the transition 1→ 0 when an electron leaves the quantum dot, which
occurs at rate γR .
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Exercise 4.35 Convince yourself of this from Eq. (4.315).

Next, we will also assume that D and D′ are both much larger than γL or γR . This means
that many electrons will tunnel through the QPC before the electron dot-occupation number
changes. Thus the fluctuations in the QPC current Ic(t) due to individual tunnelling events
through the QPC (described by dN (t)) can be ignored, and it can be treated simply as a
two-valued quantity:

〈I 〉c (t) = eD + e(D′ −D)〈n〉c(t). (4.316)

The two values are eD and eD′, depending on the value of〈n〉c(t), and transitions between
them are governed by the transition rates γL and γR . A process such as this is called a
random telegraph process.

Using known results for a random telegraph process [Gar85], we can calculate the
stationary two-time correlation function for the QPC current,

R(t − s) ≡ E[I (t), I (s)]ss

= e2(D −D′)2 γLγR

(γl + γR)2
e−(γR+γL)|t−s|. (4.317)

Here E[A,B] ≡ E[AB]− E[A] E[B], and Eq. (4.317) is sometimes called the reduced
correlation function because of the subtraction of the products of the means.

Exercise 4.36 Derive Eq. (4.317) from the master equation (4.302) by identifying I (t) with
the observable eD + e(D′ −D)n̂(t), and using the quantum regression theorem (4.191).

As in the case of photocurrents, it is often convenient to characterize the dynamics by
the spectrum of the current. We define it using the reduced correlation function:

SQPC(ω) =
∫ ∞
−∞

dτ e−iωτR(τ ). (4.318)

Exercise 4.37 Show that, for the situation considered above, the QPC spectrum is the
Lorentzian

SQPC(ω) = e2(D −D′)2 2γLγR
(γL + γR)2

γL + γR

(γL + γR)2 + ω2
. (4.319)

Conditional dynamics. We now focus on the conditional dynamics of the quantum dot as
the QPC current, I (t), is monitored. That is, we average over the dot-tunnelling events
described by dMb(t). Physically, this is reasonable because it would be very difficult to
discern the charge pulses (less than one electron) associated with these jumps. It would be
similarly difficult to discern the individual jumps dN(t) which define the QPC current I (t)
according to Eq. (4.312). In the above, we avoided that issue by considering the limit in
which the rate of tunnelling events through the QPC was so high that I (t) could be treated
as a random telegraph process, with randomness coming from the quantum-dot dynamics
but no randomness associated with the QPC tunnelling itself. It is apparent from the results
of the experiment (see Fig. 4.11) that this is a good, but not perfect, approximation. That
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Fig. 4.11 A typical experimental record of the QPC tunnel current as it switches between two values
depending on the occupation of the nearby quantum dot. Adapted by permission from Macmillan
Publishers Ltd, Nature Physics, E. V. Sukhorukov et al., 3, 243, Fig. 1(c), copyright 2007.

is to say, it is evident that there is some noise on the current in addition to its switching
between the values eD and eD′. This noise is due in part to the stochastic processes of
electrons tunnelling through the QPC and in part to excess noise added in the amplification
process. It is obvious that the individual jumps through the QPC are not resolved; rather,
the noise appears to be that of a diffusion process.

We saw in Section 4.8.3 that, if the noise in an ideal current is a Wiener process and
the excess noise is also a Wiener process, then the effect of the contaminating noise
is simply to reduce the efficiency of the detection to ζ < 1. Since this is the simplest
model of imperfect detection, we will apply it in the present case. This requires finding a
diffusive approximation to the quantum jump stochastic master equation for describing the
conditional QPC current dynamics. As will be seen, this requires |D′ −D|/D � 1. From
Fig. 4.11 we see that in the experiment this ratio evaluated to approximately 0.03, so this
approximation seems reasonable.

On averaging over the jump process dMb, introducing an efficiency ζ as described above
and assuming for simplicity that τ̃ and −χ̃ are real and positive (so that the relative phase
θ = π ), Eq. (4.315) reduces to

dρI = dN (t)G[
√
ζ (τ̃ + χ̃ n̂)]ρI + ζ 1

2 dt H
[
2τ̃ χ̃ n̂− (χ̃ n̂)2

]
ρI

+ dt
{
γLD[ĉ†]+ γRD[ĉ]+ (1− ζ )D[τ̃ + χ̃ n̂]

}
ρI , (4.320)

where we have used a new subscript to denote conditioning on I (t) = e dN/dt , where

E[dN (t)] = Tr
[
J [
√
ζ (τ̃ + χ̃ n̂)]ρc

]
= ζ [D + (D′ −D)〈n〉c(t)]. (4.321)

This describes quantum jumps, in that every time there is a tunnelling event (dN = 1) the
conditional state changes by a finite amount.

To derive a diffusive limit, we make the following identifications:

−
√
ζ χ̃ n̂→ ĉ;

√
ζ τ̃ → γ. (4.322)

Then, apart from the additional irreversible terms, Eq. (4.320) is identical to the conditional
master equation for homodyne detection (4.66). Thus, if we assume that τ̃ � −χ̃ (or,
equivalently, |D′ −D|/D � 1), we can follow the procedure of Section 4.4.2. We thus
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Fig. 4.12 A QPC is used to monitor the occupation of a quantum dot (1) coherently coupled by
tunnelling to another quantum dot (2).

obtain the diffusive SME

dρc(t) = dt
(
γLD[ĉ†]+ γRD[ĉ]+ κD[n̂]

)
ρc(t)+

√
κζ dW (t)H[n̂]ρc(t), (4.323)

where κ = χ̃2, and here κ � D. The current on which the state is conditioned is

Ic(t) = e
√
ζD
[√

ζD −
√
ζκ〈n̂〉c(t)− ξ (t)

]
, (4.324)

where ξ (t) = dW/dt as usual. Note the negative signs in Eq. (4.324), because of the sign
of χ̃ , and also the constant term which dominates over the term containing the conditional
mean, since κ � D.

We can now find the dynamics of the dot occupation, conditioned on the observed QPC
current, as

d〈n̂〉c
dt
= γL(1− 〈n̂〉c)− γR〈n̂〉c + 2

√
ζκ〈n̂〉c(1− 〈n̂〉c)ξ (t). (4.325)

Note that the noise ‘turns off’ when the dot is either occupied or empty (〈n̂〉c = 1 or 0).
This is necessary mathematically in order to prevent the occupation becoming less than 0
or greater than 1. Physically, if 〈n̂〉c = 1 (0), we are sure that there is (is not) an electron on
the dot, so monitoring the dot cannot give us any more information about the state. Thus,
there is no updating of the conditional mean occupation.

4.9.2 Monitoring a double quantum dot

In many ways the QPC coupled to a single quantum dot is not especially quantum; the
state can be described by a single number, the occupation probability 〈n̂〉, since quantum
coherences are irrelevant. A modified model in which quantum coherence is important is
the double quantum dot (DQD) depicted in Fig. 4.12. This was mentioned before briefly
in Section 3.10.1. A system such as this can also be realized in a GaAs/AlGaAs structure
[PJM+04, FHWH07]. Here the DQD is not connected to leads (it always contains exactly
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one electron), so the Hamiltonian for this system is

Ĥ = ĤDQD + ĤQPC + Ĥcoup, (4.326)

where

ĤDQD = ω1ĉ
†
1 ĉ1 + ω2ĉ

†
2 ĉ2 +�(ĉ†1 ĉ2 + ĉ

†
2 ĉ1)/2, (4.327)

Ĥcoup =
∑
k,q

ĉ
†
1 ĉ1

(
χkqâ

†
LkâRq + χ∗qkâ

†
RqâLk

)
, (4.328)

and ĤQPC is the same as in the previous model.
A detailed analysis of this model is given in Ref. [GM01]. Following the method used

above, the conditional evolution of the DQD is described by the SME

dρI = dN (t)G[
√
ζ (τ̃ + χ̃ n̂1)]ρI + ζ 1

2 dt H
[
2τ̃ χ̃ n̂1 − (χ̃ n̂1)2]ρI

− i
[
(ω2 − ω1)(n̂1 − n̂2)/2+�(c†1c2 + c

†
2c1)/2, ρI

]
dt, (4.329)

where n̂j = ĉ
†
j ĉj .

Averaging over the jump process gives the unconditional master equation

ρ̇ = κD[n̂1]ρ − i[V̂ , ρ]. (4.330)

Here κ = |χ̃ |2 as before, while n̂j = ĉ
†
j ĉj and the effective Hamiltonian is

V̂ = �

2
σ̂z + �

2
σ̂x (4.331)

(cf. Eq. (3.31)). Here we have defined a Bloch representation by

σ̂x = ĉ
†
1 ĉ2 + ĉ

†
2 ĉ1, (4.332)

σ̂y = i(ĉ†1 ĉ2 − ĉ
†
2 ĉ1), (4.333)

σ̂z = ĉ
†
2 ĉ2 − ĉ

†
1 ĉ1, (4.334)

so that z(t) = 1 and z(t) = −1 indicate that the electron is localized in dot 2 and dot 1,
respectively.

Exercise 4.38 Verify that the above operators σ̂k are Pauli operators.

The parameter � is the strength of the tunnelling from one dot to the other, while � =
ω2 − ω1 + |τ̃ ||χ̃ |sin θ is the difference in energy levels between the two dots, which is
influenced by the coupling to the QPC unless sin θ = 0. (Recall that θ is the relative phase
of the χ̃ and τ̃ .) The coupling to the QPC also destroys coherence between the dots at the
decoherence rate κ .

Exercise 4.39 Derive the equations for the Bloch vector (x, y, z) from Eq. (4.330), and
show that the steady state is (0, 0, 0), a maximally mixed state.
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Fig. 4.13 Differences in behaviour between unconditional and conditional evolutions. The initial
DQD state is z = −1 (dot 1). The parameters are ζ = 1, � = 0, θ = π and D = κ = �/2, and time
is in units of κ−1. (Recall that κ = |χ̃ |2 while D = |τ̃ |2.) (a) Unconditional evolution of z(t). (b)
Conditional evolution of zc(t), interrupted by quantum jumps, corresponding to the stochastically
generated QPC detection record shown in (c). Reprinted Figure 3 with permission from H-S. Goan
and G. J. Milburn, Phys. Rev. B 64, 235307, (2001). Copyright 2008 by the American Physical
Society.

The unconditional evolution of z(t) is shown in Fig. 4.13(a). It undergoes damped
oscillations, tending towards zero, as expected for a maximally mixed steady state. The
conditional time evolution is quite different. For simplicity we first consider the case,
shown in Fig. 4.13(b), of θ = π and D′ = |τ̃ + χ̃ |2 = 0. That is, due to the electrostatic
repulsion generated by the DQD electron, the QPC is blocked (no electron is transmitted)
when dot 1 is occupied. As a consequence, whenever there is a detection of an electron
tunnelling through the QPC barrier, the DQD state is collapsed into the state z = 1 (dot
2 occupied). Note that these jumps are more likely to happen when z is close to 1, so
jumps tend to be small (contrast this with the conditioned evolution of a two-level atom
under direct detection of its resonance fluorescence, Section 4.6.1). Between jumps, the
evolution is smooth but non-unitary. Averaging over the many individual realizations shown
in Fig. 4.13(b) leads to a closer and closer approximation of the ensemble average in
Fig. 4.13(a).

The plot shown is for the case in which D is comparable to �. In the limit D � �, the
jumps become very frequent (with rateD) when the system is in (or close to) the state z = 1.
Since each jump returns the system to state z = 1, as discussed above, the system tends to
get stuck in state z = 1 (electron in dot 2). This is an example of the quantum watched-pot
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effect, or quantum Zeno effect.4 In fact, the electron can still make a transition to dot 1 (the
z = −1 state), but the rate of this is suppressed from O(�), in the no-measurement case,
to O(�2/D). In the limit �/D→∞, the transition rate goes to zero.

The quantum diffusion limit. We saw in Section 4.9.1 that the quantum diffusion equations
can be obtained from the quantum jump description under the assumption that |τ̃ | � |χ̃ |
(or equivalently D � κ).

Exercise 4.40 Derive the diffusive SME for the double-dot case, and hence the diffusive
stochastic Bloch equations:

dxc(t) = −[� dt +
√
ζκ sin θ dW (t)]yc(t)− (κ/2)xc(t)dt

+
√
ζκ cos θ zc(t)xc(t)dW (t), (4.335)

dyc(t) = [� dt +
√
ζκ sin θ dW (t)]xc(t)−�zc(t)dt − (κ/2)yc(t)dt

+
√
ζκ cos θ zc(t)yc(t)dW, (4.336)

dzc(t) = �yc(t)dt −
√
ζκ cos θ

[
1− z2

c(t)
]
dW. (4.337)

The measured current gives information about which dot is occupied, as shown in the final
term of Eq. (4.337), as expected. However, for sin θ �= 0, it also gives information about
the rotation around the z axis, as shown in the other two equations. That is, the effective
detuning has a deterministic term � and a stochastic term proportional to the noise in the
current.

In Figs. 4.14(a)–(d), we plot the conditional quantum-jump evolution of zc(t) and the
corresponding detection record dNc(t), with various values of (|τ̃ |/|χ̃ |). Each jump (dis-
continuity) in the zc(t) curves corresponds to the detection of an electron through the QPC
barrier. One can clearly observe that, with increasing (|τ̃ |/|χ̃ |), the rate of jumps increases,
but the amplitude of the jumps decreases. When D′ = 0 each jump collapses the DQD
electron into dot 2 (z = 1), but as D′ approaches D (from below) the jumps in z become
smaller, although they are always positive. That is because, whenever there is a detection
of an electron passing through QPC, dot 2 is more likely to be occupied than dot 1.

The case for quantum diffusion using Eqs. (4.335)–(4.337) is plotted in Fig. 4.14(e). In
this case, infinitely small jumps occur infinitely frequently. We can see that the behaviour
of zc(t) for |τ̃ | = 5|χ̃ | in the quantum-jump case shown in Fig. 4.14(d) is already very close
to that of quantum diffusion shown in Fig. 4.14(e). Note that for the case θ = π (which we
have used in the simulations) the unconditional evolution does not depend on the parameter
|τ̃ |. Thus all of these unravellings average to the same unconditioned evolution shown in
Fig. 4.13(a).

The QPC current spectrum. We now calculate the stationary spectrum of the current
fluctuations through the QPC measuring the coherently coupled DQD. This quantity is

4 The former name alludes to the saying ‘a watched pot never boils’; the latter alludes to the ‘proof’ by the Greek philosopher
Zeno of Elea that motion is impossible. See Ref. [GWM93] for a review of this effect and an analysis using quantum trajectory
theory.



4.9 Continuous measurement in mesoscopic electronics 211

Fig. 4.14 Transition from quantum jumps to quantum diffusion. The parameters are ζ = 1, � = 0,
θ = π and κ = �/2, and time is in units of κ−1 = |χ̃ |−2. In (a)–(d) are shown the quantum jump,
conditional evolutions of zc(t) and corresponding detection moments with the following |τ̃ |/|χ̃ |
ratios: (a) 1, (b) 2, (c) 3 and (d) 5. In (e) the conditional evolutions of zc(t) in the quantum diffusive
limit (|τ̃ |/|χ̃ | → ∞) are shown. The variable ξ (t) = dW/dt , the noise in the QPC current in the
quantum-diffusive limit, is scaled so as to have unit variance on the plot. Reprinted Figure 4 with
permission from H-S. Goan and G. J. Milburn, Phys. Rev. B 64, 235307, (2001). Copyright 2008 by
the American Physical Society.
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defined in Eq. (4.318), where

R(τ ) = E[I (t + τ )I (t)]− E[I (t + τ )]E[I (t)]. (4.338)

This two-time correlation function for the current has been calculated for the case of
quantum diffusion in Ref. [Kor01a]. Here we will present the quantum-jump case from
Ref. [GM01], where I (t) = e dN (t)/dt .

Using the SME (4.329) and following the derivation in Section 4.3.2, we find that

E[I (t)] = eE[dN (t)]/dt = eζ Tr
[{D + (D′ −D)n̂1}ρ(t)

]
, (4.339)

while, for τ ≥ 0,

E[I (t + τ )I (t)] = e2E[dNc(t + τ )dN (t)]/(dt)2

= e2ζ 2Tr
[{D + (D′ −D)n̂1}eLτ {J [τ̃ + χ̃ n̂1]ρ(t)}]

+ e2ζ Tr
[{D + (D′ −D)n̂1}ρ(t)

]
δ(τ ). (4.340)

In this form, we have related the ensemble averages of a classical random variable to the
quantum averages with respect to the qubit state matrix. The case τ < 0 is covered by the
fact that the two-time autocorrelation function is symmetric by definition.

Now we are interested in the steady-state case in which t →∞, so that ρ(t)→ I/2
(see Exercise 4.39.) Thus we can simplify Eq. (4.340) using the following identities for an
arbitrary operator B: Tr[eLτB] = Tr[B] and Tr[BeLτ ρ∞] = Tr[B]/2, Hence we obtain the
steady-state R(τ ) for τ ≥ 0 as

R(τ ) = eI∞δ(τ )+ e2ζ 2(D′ −D)2
{
Tr
[
n̂1eLτ (n̂1/2)

]− Tr[n̂1/2]2
}
, (4.341)

where I∞ = eζ (D′ +D)/2 is the steady-state current.

Exercise 4.41 Verify Eq. (4.341).

The first term in Eq. (4.341) represents the shot-noise component. It is easy to evaluate
the second term analytically for the � = 0 case, yielding

R(τ ) = eI∞δ(τ )+ (δI )2

4

(
µ+eµ−τ − µ−eµ+τ

µ+ − µ−

)
, (4.342)

where µ± = −(κ/4) ±
√

(κ/4)2 −�2, and δI = eζ (D − D′) is the difference between
the two average currents.

Exercise 4.42 Derive Eq. (4.342).
Hint: This can be done by solving the equations for the unconditioned Bloch vector –
Eqs. (4.335)–(4.337) with � = ζ = 0 – with the appropriate initial conditions to represent
the initial ‘state’ n̂1/2. This ‘state’ is not normalized, but the norm is unchanged by the
evolution, so one can take out a factor of 1/2 and use the normalized initial state n̂1.
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Fourier transforming this, as in Eq. (4.318), yields the spectrum of the current fluctuations
as

S(ω) = S0 + �2(δI )2κ/4

(ω2 −�2)2 + (κ/2)2 ω2
, (4.343)

where S0 = eI∞ represents the shot noise. Note that, from Eq. (4.343), the noise spectrum
at ω = � can be written as

S(�)− S0

S0
= (δI )2

(eκ)I∞
. (4.344)

Exercise 4.43 Show that this ratio cannot exceed 4ζ .

For the case θ = π (real tunnelling amplitudes), this ratio can be written as

S(�)− S0

S0
= 2ζ

(
√
D +√D′)2

(D +D′)
(4.345)

since κ = (
√
D −√D′)2 in this case. In the quantum-diffusive limit (D +D′)� (D −

D′), this ratio attains its upper bound, as was first shown in Ref. [Kor01a].
For κ < 4�, the spectrum has a double-peak structure, indicating that coherent tunnelling

is taking place between the two qubit states. This is illustrated in Figs. 4.15(a) and (b). Con-
ditionally, the oscillations of zc(t) would be very nearly sinusoidal for κ � 4�, but would
become increasingly noisy and distorted as κ increases. When κ ≥ 4�, the measurement
is strong enough substantially to destroy any coherence between the two dots, suppressing
coherent oscillations. In this case, only a single peak, centred at ω = 0, appears in the noise
spectrum, as illustrated in Figure 4.15(c). In the limit κ � 4�, the conditioned state of the
DQD exhibits jump-like behaviour, with the electron being very likely to be in one well or
the other at all times. That is, zc(t) can be modelled as a classical random telegraph process,
with two states, zc = ±1, just as in the single-dot case of Section 4.9.1.

4.9.3 Other theoretical approaches to monitoring in mesoscopic systems

In monitoring a solid-state quantum system, if one ignores or averages over the results, the
only effect of the measurement is to decohere the system. The first step beyond this is to
condition on a single property of the output (by which we mean the drain of the QPC, for
example). The authors of Refs. [Gur97, SS98] considered conditioning on the number N
of excess electrons that had tunnelled into the drain. This approach represents suboptimal
conditioning of the system’s state matrix because the information in the times of electron
tunnelling events through the detector is unused. (In the case of a single-electron transistor
(SET) as detector [SS98], further information is ignored – the times at which electrons
tunnel onto the SET island from the source. See Ref. [Oxt07] for a discussion of this and
other points in this section.)

A stochastic equation representing the conditional evolution of a solid-state system in
real time was introduced into the phenomenological model by Korotkov [Kor99]. This was
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Fig. 4.15 A plot of the noise spectrum of the QPC current monitoring a double quantum dot. The
spectrum is normalized by the shot-noise level, and is shown for various ratios of measurement
strength κ to tunnelling strength �, with κ/(4�) equalling (a) 0.01, (b) 0.5 and (c) 2. For discussion,
see the text. Reprinted Figure 5 with permission from H-S. Goan and G. J. Milburn, Phys. Rev. B 64,
235307, (2001). Copyright 2008 by the American Physical Society.

later derived from a microscopic model in Ref. [Kor01b]. This model was restricted to a
weakly responding detector (the diffusive limit discussed above), but has been extended to
the case of a strongly responding detector (quantum jumps) [Kor03]. Korotkov’s approach
(which he called ‘Bayesian’) is completely equivalent to the quantum trajectory approach
used above [GMWS01]. Quantum trajectories were first used in the solid-state context in
Ref. [WUS+01], which included a derivation from a (rather simplistic) microscopic model.

From the beginning [Kor99, WUS+01], these theories of continuous monitoring in
mesoscopic systems have allowed for non-ideal monitoring. That is, even if the initial state
were pure, the conditional state would not in general remain pure; there is no description
using a stochastic Schrödinger equation. The microscopic model in Ref. [WUS+01] is
inherently non-ideal, while, in Ref. [Kor99], Korotkov introduced a phenomenological
dephasing rate, which he later derived by introducing extra back-action noise from the
detector [Kor01b]. Another sort of non-ideality was considered in Ref. [GM01], where the
authors introduce ‘inefficient’ detection by a QPC, as used in Section 4.9.1 Here efficiency
has the same sense as in quantum optics: some proportion 1− ζ of the detector output
is ‘lost’. This is of course equivalent to introducing extra decoherence as produced by an
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unmonitored detector. As shown generally in Section 4.8.3, in the diffusive limit, the same
conditioning equation results if extra white noise (‘dark noise’) is added to the detector
output before it is recorded.

The theory of quantum trajectories for mesoscopic systems has recently been extended to
allow for the noisy filtering characteristic of amplifiers used in such experiments [OWW+05,
OGW08]. This was done using the same theory as that presented in Section 4.8.4, but taking
into account correlations between noise that disturbs the system and noise in the recorded
current. Such ‘realistic’ quantum trajectories are essential for optimal feedback control,
because the optimal algorithms are based upon the state conditioned on the measurement
record, as will be discussed in Section 6.3.3. Note that the authors of Ref. [RK03] do consider
the effect of a finite-bandwidth filter on a feedback algorithm, but that is a quite distinct
idea. There, the feedback algorithm is not based on the state of the system conditioned on
the filtered current, and indeed no such conditional state is calculated.

4.10 Further reading

There are several books that discuss continuous quantum measurement theory in the context
of open quantum systems. An Open Systems Approach to Quantum Optics by Carmichael
[Car93] was a very influential book in the quantum-optics community, and introduced
many of the terms used here, such as ‘quantum trajectory’ and ‘unravelling’. Much of this
material is contained in volume 2 of Carmichael’s recently published Statistical Methods
in Quantum Optics [Car99, Car07]. Quantum Noise by Gardiner and Zoller [GZ04] is not
confined to quantum optics. It has material on quantum trajectories and quantum stochastic
differential equations, but also covers quantum noise in a more general sense. The Theory
of Open Quantum Systems by Breuer and Pettrucione [BP02] emphasizes the application
of stochastic Schrödinger equations for numerical simulations of open quantum systems,
both Markovian and non-Markovian.

In this chapter we restricted our attention to systems obeying a Markovian master equa-
tion, and indeed a master equation of the Lindblad form. The reason is that it is only in
this case that a measurement of the bath to which the system is coupled can be performed
without altering the average evolution of the system [GW03, WG08]. In particular, the
non-Markovian stochastic Schrödinger equations developed by Diósi, Strunz and Gisin
[SDG99, Dió08] cannot be interpreted as evolution equations for a system conditioned
upon a measurement record. This is despite the fact that in the Markovian limit they
can reproduce the quantum trajectories for homodyne and heterodyne detection [GW02]
and even for direct detection [GAW04]. In fact, the only physical interpretation for these
equations is in terms of hidden-variable theories [GW03].


